Cargando…
Model-based ensembles: Lessons learned from retrospective analysis of COVID-19 infection forecasts across 10 countries
Mathematical models of different types and data intensities are highly used by researchers, epidemiologists, and national authorities to explore the inherently unpredictable progression of COVID-19, including the effects of different non-pharmaceutical interventions. Regardless of model complexity,...
Autores principales: | Drews, Martin, Kumar, Pavan, Singh, Ram Kumar, De La Sen, Manuel, Singh, Sati Shankar, Pandey, Ajai Kumar, Kumar, Manoj, Rani, Meenu, Srivastava, Prashant Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479318/ https://www.ncbi.nlm.nih.gov/pubmed/34592277 http://dx.doi.org/10.1016/j.scitotenv.2021.150639 |
Ejemplares similares
-
Nitrogen dioxide as proxy indicator of air pollution from fossil fuel burning in New Delhi during lockdown phases of COVID-19 pandemic period: impact on weather as revealed by Sentinel-5 precursor (5p) spectrometer sensor
por: Kumar, Pavan, et al.
Publicado: (2023) -
Highlighting the compound risk of COVID-19 and environmental pollutants using geospatial technology
por: Singh, Ram Kumar, et al.
Publicado: (2021) -
Forecasting major impacts of COVID-19 pandemic on country-driven sectors: challenges, lessons, and future roadmap
por: Kumar, Saket, et al.
Publicado: (2021) -
Deep-LSTM ensemble framework to forecast Covid-19: an insight to the global pandemic
por: Shastri, Sourabh, et al.
Publicado: (2021) -
A clinical study on the Naimittika Rasayana effect of Silajatu and Mamajjaka in type-2 Diabetes Mellitus
por: Kumar, Sanjai, et al.
Publicado: (2014)