Cargando…
A novel combined dynamic ensemble selection model for imbalanced data to detect COVID-19 from complete blood count
BACKGROUND: As blood testing is radiation-free, low-cost and simple to operate, some researchers use machine learning to detect COVID-19 from blood test data. However, few studies take into consideration the imbalanced data distribution, which can impair the performance of a classifier. METHOD: A no...
Autores principales: | Wu, Jiachao, Shen, Jiang, Xu, Man, Shao, Minglai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479386/ https://www.ncbi.nlm.nih.gov/pubmed/34614451 http://dx.doi.org/10.1016/j.cmpb.2021.106444 |
Ejemplares similares
-
Iterative ensemble feature selection for multiclass classification of imbalanced microarray data
por: Yang, Junshan, et al.
Publicado: (2016) -
Improved PSO_AdaBoost Ensemble Algorithm for Imbalanced Data
por: Li, Kewen, et al.
Publicado: (2019) -
Deep Hierarchical Ensemble Model for Suicide Detection on Imbalanced Social Media Data
por: Li, Zepeng, et al.
Publicado: (2022) -
Heterogeneous Ensemble Combination Search Using Genetic Algorithm for Class Imbalanced Data Classification
por: Haque, Mohammad Nazmul, et al.
Publicado: (2016) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018)