Cargando…
Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Magnifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis
This paper presents data on the bioactive phytoconstituents in Azadirachta indica, Canna indica, Magnifera indica, and Moringa oleifera analyzed using quantitative and qualitative phytochemical screening methods, Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479406/ https://www.ncbi.nlm.nih.gov/pubmed/34621933 http://dx.doi.org/10.1016/j.dib.2021.107407 |
_version_ | 1784576249270632448 |
---|---|
author | Bolade, Oladotun P. Williams, Akan B. Benson, Nsikak U. |
author_facet | Bolade, Oladotun P. Williams, Akan B. Benson, Nsikak U. |
author_sort | Bolade, Oladotun P. |
collection | PubMed |
description | This paper presents data on the bioactive phytoconstituents in Azadirachta indica, Canna indica, Magnifera indica, and Moringa oleifera analyzed using quantitative and qualitative phytochemical screening methods, Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS). Extracts were prepared in water, ethanol (EtOH) and EtOH:water mix. Identification of bioactive components was based on their spectral data and retention times compared with National Institute of Standards and Technology (NIST) mass spectral library. The most prominent absorption bands indicated are O-H stretching vibration, C-H stretch of polyols, aromatic C=C stretching vibration, O-H stretch of polyols, C-H stretching vibration and C-OH polyols. The GC-MS characterization for A. indica showed the presence of phenols, organic acids and carbohydrates with cannabidiol as the most abundant. Crude extracts of M. oleifera showed six phenolic compounds with 4-hydroxy-bezoic acid and cannabidiol present prominently. Six phenolic phytoconstituents were identified in M. indica extracts with 1,2,3-benzenetriol as the major polyphenolic compound. Biogenic iron oxide nanoparticles were synthesized and the formation was confirmed using a UV spectrometer (UV-3000 ORI, Germany) between 200 and 800 nm spectral range. X-ray diffraction (XRD) characterization of the biosynthesized iron oxide nanoparticles was carried out using Empyrean, Malvern PanAnalytical. |
format | Online Article Text |
id | pubmed-8479406 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-84794062021-10-06 Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Magnifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis Bolade, Oladotun P. Williams, Akan B. Benson, Nsikak U. Data Brief Data Article This paper presents data on the bioactive phytoconstituents in Azadirachta indica, Canna indica, Magnifera indica, and Moringa oleifera analyzed using quantitative and qualitative phytochemical screening methods, Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS). Extracts were prepared in water, ethanol (EtOH) and EtOH:water mix. Identification of bioactive components was based on their spectral data and retention times compared with National Institute of Standards and Technology (NIST) mass spectral library. The most prominent absorption bands indicated are O-H stretching vibration, C-H stretch of polyols, aromatic C=C stretching vibration, O-H stretch of polyols, C-H stretching vibration and C-OH polyols. The GC-MS characterization for A. indica showed the presence of phenols, organic acids and carbohydrates with cannabidiol as the most abundant. Crude extracts of M. oleifera showed six phenolic compounds with 4-hydroxy-bezoic acid and cannabidiol present prominently. Six phenolic phytoconstituents were identified in M. indica extracts with 1,2,3-benzenetriol as the major polyphenolic compound. Biogenic iron oxide nanoparticles were synthesized and the formation was confirmed using a UV spectrometer (UV-3000 ORI, Germany) between 200 and 800 nm spectral range. X-ray diffraction (XRD) characterization of the biosynthesized iron oxide nanoparticles was carried out using Empyrean, Malvern PanAnalytical. Elsevier 2021-09-21 /pmc/articles/PMC8479406/ /pubmed/34621933 http://dx.doi.org/10.1016/j.dib.2021.107407 Text en © 2021 The Author(s). Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Data Article Bolade, Oladotun P. Williams, Akan B. Benson, Nsikak U. Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Magnifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis |
title | Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Magnifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis |
title_full | Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Magnifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis |
title_fullStr | Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Magnifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis |
title_full_unstemmed | Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Magnifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis |
title_short | Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Magnifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis |
title_sort | dataset on analytical characterization of bioactive components from azadirachta indica, canna indica, magnifera indica and moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479406/ https://www.ncbi.nlm.nih.gov/pubmed/34621933 http://dx.doi.org/10.1016/j.dib.2021.107407 |
work_keys_str_mv | AT boladeoladotunp datasetonanalyticalcharacterizationofbioactivecomponentsfromazadirachtaindicacannaindicamagniferaindicaandmoringaoleiferaleafextractsandtheirapplicationsinnanoparticlesbiosynthesis AT williamsakanb datasetonanalyticalcharacterizationofbioactivecomponentsfromazadirachtaindicacannaindicamagniferaindicaandmoringaoleiferaleafextractsandtheirapplicationsinnanoparticlesbiosynthesis AT bensonnsikaku datasetonanalyticalcharacterizationofbioactivecomponentsfromazadirachtaindicacannaindicamagniferaindicaandmoringaoleiferaleafextractsandtheirapplicationsinnanoparticlesbiosynthesis |