Cargando…
Supervised Learning Algorithm to Study the Magnetohydrodynamic Flow of a Third Grade Fluid for the Analysis of Wire Coating
In the present study, modeling of intelligent numerical computing through Levenberg–Marquardt back propagation-based supervised neural network (LMB-SNN) is incorporated to analyze the magnetohydrodynamic flow of a third grade fluid for wire coating analysis (MHD-TGFWCA). The original mathematical fo...
Autores principales: | Aljohani, Jawaher Lafi, Alaidarous, Eman Salem, Raja, Muhammad Asif Zahoor, Alhothuali, Muhammed Shabab, Shoaib, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479500/ https://www.ncbi.nlm.nih.gov/pubmed/34603928 http://dx.doi.org/10.1007/s13369-021-06212-3 |
Ejemplares similares
-
Intelligent computing through neural networks for numerical treatment of non-Newtonian wire coating analysis model
por: Aljohani, Jawaher Lafi, et al.
Publicado: (2021) -
Intelligent computing technique based supervised learning for squeezing flow model
por: Almalki, Maryam Mabrook, et al.
Publicado: (2021) -
Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis
por: Khan, Zeeshan, et al.
Publicado: (2018) -
Intelligent Computing with Levenberg–Marquardt Backpropagation Neural Networks for Third-Grade Nanofluid Over a Stretched Sheet with Convective Conditions
por: Shoaib, Muhammad, et al.
Publicado: (2021) -
Magnetohydrodynamics
por: Cowling, Thomas G
Publicado: (1957)