Cargando…
Structure‐function relationships of the human vertebral endplate
BACKGROUND: Although deformation and fracture of the vertebral endplate have been implicated in spinal conditions such as vertebral fracture and disc degeneration, few biomechanical studies of this structure are available. The goal of this study was to quantify the mechanical behavior of the vertebr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479528/ https://www.ncbi.nlm.nih.gov/pubmed/34611592 http://dx.doi.org/10.1002/jsp2.1170 |
_version_ | 1784576278124298240 |
---|---|
author | Wu, Yuanqiao Loaiza, Johnfredy Banerji, Rohin Blouin, Olivia Morgan, Elise |
author_facet | Wu, Yuanqiao Loaiza, Johnfredy Banerji, Rohin Blouin, Olivia Morgan, Elise |
author_sort | Wu, Yuanqiao |
collection | PubMed |
description | BACKGROUND: Although deformation and fracture of the vertebral endplate have been implicated in spinal conditions such as vertebral fracture and disc degeneration, few biomechanical studies of this structure are available. The goal of this study was to quantify the mechanical behavior of the vertebral endplate. METHODS: Eight‐five rectangular specimens were dissected from the superior and/or inferior central endplates of human lumbar spine segments L1 to L4. Micro‐computed tomography (μCT) imaging, four‐point‐bend testing, and ashing were performed to quantify the apparent elastic modulus and yield stress (modulus and yield stress, respectively, of the porous vertebral endplate), tissue yield stress (yield stress of the tissue of the vertebral endplate, excluding pores), ultimate strain, fracture strain, bone volume fraction (BV/TV), bone mineral density (BMD), and various measures of tissue density and composition (tissue mineral density, ash fraction, and ash density). Regression was used to assess the dependence of mechanical properties on density and composition. RESULTS: Wide variations in elastic and failure properties, and in density and tissue composition, were observed. BMD and BV/TV were good predictors of many of the apparent‐level mechanical properties, including modulus, yield stress, and in the case of the inferior vertebral endplate, failure strains. Similar values of the mechanical properties were noted between superior and inferior vertebral endplates. In contrast to the dependence of apparent stiffness and strength on BMD and BV/TV, none of the mechanical properties depended on any of the tissue‐level density measurements. CONCLUSION: The dependence of many of the mechanical properties of the vertebral endplate on BV/TV and BMD suggests possibilities for noninvasive assessment of how this region of the spine behaves during habitual and injurious loading. Further study of the nonmineral components of the endplate tissue is required to understand how the composition of this tissue may influence the overall mechanical behavior of the vertebral endplate. |
format | Online Article Text |
id | pubmed-8479528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84795282021-10-04 Structure‐function relationships of the human vertebral endplate Wu, Yuanqiao Loaiza, Johnfredy Banerji, Rohin Blouin, Olivia Morgan, Elise JOR Spine Research Articles BACKGROUND: Although deformation and fracture of the vertebral endplate have been implicated in spinal conditions such as vertebral fracture and disc degeneration, few biomechanical studies of this structure are available. The goal of this study was to quantify the mechanical behavior of the vertebral endplate. METHODS: Eight‐five rectangular specimens were dissected from the superior and/or inferior central endplates of human lumbar spine segments L1 to L4. Micro‐computed tomography (μCT) imaging, four‐point‐bend testing, and ashing were performed to quantify the apparent elastic modulus and yield stress (modulus and yield stress, respectively, of the porous vertebral endplate), tissue yield stress (yield stress of the tissue of the vertebral endplate, excluding pores), ultimate strain, fracture strain, bone volume fraction (BV/TV), bone mineral density (BMD), and various measures of tissue density and composition (tissue mineral density, ash fraction, and ash density). Regression was used to assess the dependence of mechanical properties on density and composition. RESULTS: Wide variations in elastic and failure properties, and in density and tissue composition, were observed. BMD and BV/TV were good predictors of many of the apparent‐level mechanical properties, including modulus, yield stress, and in the case of the inferior vertebral endplate, failure strains. Similar values of the mechanical properties were noted between superior and inferior vertebral endplates. In contrast to the dependence of apparent stiffness and strength on BMD and BV/TV, none of the mechanical properties depended on any of the tissue‐level density measurements. CONCLUSION: The dependence of many of the mechanical properties of the vertebral endplate on BV/TV and BMD suggests possibilities for noninvasive assessment of how this region of the spine behaves during habitual and injurious loading. Further study of the nonmineral components of the endplate tissue is required to understand how the composition of this tissue may influence the overall mechanical behavior of the vertebral endplate. John Wiley & Sons, Inc. 2021-09-13 /pmc/articles/PMC8479528/ /pubmed/34611592 http://dx.doi.org/10.1002/jsp2.1170 Text en © 2021 The Authors. JOR Spine published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Wu, Yuanqiao Loaiza, Johnfredy Banerji, Rohin Blouin, Olivia Morgan, Elise Structure‐function relationships of the human vertebral endplate |
title | Structure‐function relationships of the human vertebral endplate |
title_full | Structure‐function relationships of the human vertebral endplate |
title_fullStr | Structure‐function relationships of the human vertebral endplate |
title_full_unstemmed | Structure‐function relationships of the human vertebral endplate |
title_short | Structure‐function relationships of the human vertebral endplate |
title_sort | structure‐function relationships of the human vertebral endplate |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479528/ https://www.ncbi.nlm.nih.gov/pubmed/34611592 http://dx.doi.org/10.1002/jsp2.1170 |
work_keys_str_mv | AT wuyuanqiao structurefunctionrelationshipsofthehumanvertebralendplate AT loaizajohnfredy structurefunctionrelationshipsofthehumanvertebralendplate AT banerjirohin structurefunctionrelationshipsofthehumanvertebralendplate AT blouinolivia structurefunctionrelationshipsofthehumanvertebralendplate AT morganelise structurefunctionrelationshipsofthehumanvertebralendplate |