Cargando…
A Deep Learning System for Automatic Assessment of Anterior Chamber Angle in Ultrasound Biomicroscopy Images
PURPOSE: To develop and assess a deep learning system that automatically detects angle closure and quantitatively measures angle parameters from ultrasound biomicroscopy (UBM) images using a deep learning algorithm. METHODS: A total of 3788 UBM images (2146 open angle and 1642 angle closure) from 14...
Autores principales: | Wang, Wensai, Wang, Lingxiao, Wang, Xiaochun, Zhou, Sheng, Lin, Song, Yang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479575/ https://www.ncbi.nlm.nih.gov/pubmed/34570190 http://dx.doi.org/10.1167/tvst.10.11.21 |
Ejemplares similares
-
Automatic Localization of the Scleral Spur Using Deep Learning and Ultrasound Biomicroscopy
por: Wang, Wensai, et al.
Publicado: (2021) -
Automatic Classification of Anterior Chamber Angle Using Ultrasound Biomicroscopy and Deep Learning
por: Shi, Guohua, et al.
Publicado: (2019) -
Age and Positional Effect on the Anterior Chamber Angle: Assessment by Ultrasound Biomicroscopy
por: Bell, Nicholas P., et al.
Publicado: (2013) -
Comparison of measurements of anterior chamber angle via anterior segment optical coherence tomography and ultrasound biomicroscopy
por: Yu, Zi-Yan, et al.
Publicado: (2020) -
Assessment of Anterior Chamber by Ultrasound Biomicroscopy and Anterior Segment Optical Coherence Tomography in Patients with Inflammatory Glaucoma
por: Qian, Yiyong, et al.
Publicado: (2019)