Cargando…
A Suite of Mobile Conversational Agents for Daily Stress Management (Popbots): Mixed Methods Exploratory Study
BACKGROUND: Approximately 60%-80% of the primary care visits have a psychological stress component, but only 3% of patients receive stress management advice during these visits. Given recent advances in natural language processing, there is renewed interest in mental health chatbots. Conversational...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479600/ https://www.ncbi.nlm.nih.gov/pubmed/34519655 http://dx.doi.org/10.2196/25294 |
_version_ | 1784576293976670208 |
---|---|
author | Mauriello, Matthew Louis Tantivasadakarn, Nantanick Mora-Mendoza, Marco Antonio Lincoln, Emmanuel Thierry Hon, Grace Nowruzi, Parsa Simon, Dorien Hansen, Luke Goenawan, Nathaniel H Kim, Joshua Gowda, Nikhil Jurafsky, Dan Paredes, Pablo Enrique |
author_facet | Mauriello, Matthew Louis Tantivasadakarn, Nantanick Mora-Mendoza, Marco Antonio Lincoln, Emmanuel Thierry Hon, Grace Nowruzi, Parsa Simon, Dorien Hansen, Luke Goenawan, Nathaniel H Kim, Joshua Gowda, Nikhil Jurafsky, Dan Paredes, Pablo Enrique |
author_sort | Mauriello, Matthew Louis |
collection | PubMed |
description | BACKGROUND: Approximately 60%-80% of the primary care visits have a psychological stress component, but only 3% of patients receive stress management advice during these visits. Given recent advances in natural language processing, there is renewed interest in mental health chatbots. Conversational agents that can understand a user’s problems and deliver advice that mitigates the effects of daily stress could be an effective public health tool. However, such systems are complex to build and costly to develop. OBJECTIVE: To address these challenges, our aim is to develop and evaluate a fully automated mobile suite of shallow chatbots—we call them Popbots—that may serve as a new species of chatbots and further complement human assistance in an ecosystem of stress management support. METHODS: After conducting an exploratory Wizard of Oz study (N=14) to evaluate the feasibility of a suite of multiple chatbots, we conducted a web-based study (N=47) to evaluate the implementation of our prototype. Each participant was randomly assigned to a different chatbot designed on the basis of a proven cognitive or behavioral intervention method. To measure the effectiveness of the chatbots, the participants’ stress levels were determined using self-reported psychometric evaluations (eg, web-based daily surveys and Patient Health Questionnaire-4). The participants in these studies were recruited through email and enrolled on the web, and some of them participated in follow-up interviews that were conducted in person or on the web (as necessary). RESULTS: Of the 47 participants, 31 (66%) completed the main study. The findings suggest that the users viewed the conversations with our chatbots as helpful or at least neutral and came away with increasingly positive sentiment toward the use of chatbots for proactive stress management. Moreover, those users who used the system more often (ie, they had more than or equal to the median number of conversations) noted a decrease in depression symptoms compared with those who used the system less often based on a Wilcoxon signed-rank test (W=91.50; Z=−2.54; P=.01; r=0.47). The follow-up interviews with a subset of the participants indicated that half of the common daily stressors could be discussed with chatbots, potentially reducing the burden on human coping resources. CONCLUSIONS: Our work suggests that suites of shallow chatbots may offer benefits for both users and designers. As a result, this study’s contributions include the design and evaluation of a novel suite of shallow chatbots for daily stress management, a summary of benefits and challenges associated with random delivery of multiple conversational interventions, and design guidelines and directions for future research into similar systems, including authoring chatbot systems and artificial intelligence–enabled recommendation algorithms. |
format | Online Article Text |
id | pubmed-8479600 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-84796002021-11-24 A Suite of Mobile Conversational Agents for Daily Stress Management (Popbots): Mixed Methods Exploratory Study Mauriello, Matthew Louis Tantivasadakarn, Nantanick Mora-Mendoza, Marco Antonio Lincoln, Emmanuel Thierry Hon, Grace Nowruzi, Parsa Simon, Dorien Hansen, Luke Goenawan, Nathaniel H Kim, Joshua Gowda, Nikhil Jurafsky, Dan Paredes, Pablo Enrique JMIR Form Res Original Paper BACKGROUND: Approximately 60%-80% of the primary care visits have a psychological stress component, but only 3% of patients receive stress management advice during these visits. Given recent advances in natural language processing, there is renewed interest in mental health chatbots. Conversational agents that can understand a user’s problems and deliver advice that mitigates the effects of daily stress could be an effective public health tool. However, such systems are complex to build and costly to develop. OBJECTIVE: To address these challenges, our aim is to develop and evaluate a fully automated mobile suite of shallow chatbots—we call them Popbots—that may serve as a new species of chatbots and further complement human assistance in an ecosystem of stress management support. METHODS: After conducting an exploratory Wizard of Oz study (N=14) to evaluate the feasibility of a suite of multiple chatbots, we conducted a web-based study (N=47) to evaluate the implementation of our prototype. Each participant was randomly assigned to a different chatbot designed on the basis of a proven cognitive or behavioral intervention method. To measure the effectiveness of the chatbots, the participants’ stress levels were determined using self-reported psychometric evaluations (eg, web-based daily surveys and Patient Health Questionnaire-4). The participants in these studies were recruited through email and enrolled on the web, and some of them participated in follow-up interviews that were conducted in person or on the web (as necessary). RESULTS: Of the 47 participants, 31 (66%) completed the main study. The findings suggest that the users viewed the conversations with our chatbots as helpful or at least neutral and came away with increasingly positive sentiment toward the use of chatbots for proactive stress management. Moreover, those users who used the system more often (ie, they had more than or equal to the median number of conversations) noted a decrease in depression symptoms compared with those who used the system less often based on a Wilcoxon signed-rank test (W=91.50; Z=−2.54; P=.01; r=0.47). The follow-up interviews with a subset of the participants indicated that half of the common daily stressors could be discussed with chatbots, potentially reducing the burden on human coping resources. CONCLUSIONS: Our work suggests that suites of shallow chatbots may offer benefits for both users and designers. As a result, this study’s contributions include the design and evaluation of a novel suite of shallow chatbots for daily stress management, a summary of benefits and challenges associated with random delivery of multiple conversational interventions, and design guidelines and directions for future research into similar systems, including authoring chatbot systems and artificial intelligence–enabled recommendation algorithms. JMIR Publications 2021-09-14 /pmc/articles/PMC8479600/ /pubmed/34519655 http://dx.doi.org/10.2196/25294 Text en ©Matthew Louis Mauriello, Nantanick Tantivasadakarn, Marco Antonio Mora-Mendoza, Emmanuel Thierry Lincoln, Grace Hon, Parsa Nowruzi, Dorien Simon, Luke Hansen, Nathaniel H Goenawan, Joshua Kim, Nikhil Gowda, Dan Jurafsky, Pablo Enrique Paredes. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.09.2021. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Mauriello, Matthew Louis Tantivasadakarn, Nantanick Mora-Mendoza, Marco Antonio Lincoln, Emmanuel Thierry Hon, Grace Nowruzi, Parsa Simon, Dorien Hansen, Luke Goenawan, Nathaniel H Kim, Joshua Gowda, Nikhil Jurafsky, Dan Paredes, Pablo Enrique A Suite of Mobile Conversational Agents for Daily Stress Management (Popbots): Mixed Methods Exploratory Study |
title | A Suite of Mobile Conversational Agents for Daily Stress Management (Popbots): Mixed Methods Exploratory Study |
title_full | A Suite of Mobile Conversational Agents for Daily Stress Management (Popbots): Mixed Methods Exploratory Study |
title_fullStr | A Suite of Mobile Conversational Agents for Daily Stress Management (Popbots): Mixed Methods Exploratory Study |
title_full_unstemmed | A Suite of Mobile Conversational Agents for Daily Stress Management (Popbots): Mixed Methods Exploratory Study |
title_short | A Suite of Mobile Conversational Agents for Daily Stress Management (Popbots): Mixed Methods Exploratory Study |
title_sort | suite of mobile conversational agents for daily stress management (popbots): mixed methods exploratory study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479600/ https://www.ncbi.nlm.nih.gov/pubmed/34519655 http://dx.doi.org/10.2196/25294 |
work_keys_str_mv | AT mauriellomatthewlouis asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT tantivasadakarnnantanick asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT moramendozamarcoantonio asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT lincolnemmanuelthierry asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT hongrace asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT nowruziparsa asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT simondorien asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT hansenluke asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT goenawannathanielh asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT kimjoshua asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT gowdanikhil asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT jurafskydan asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT paredespabloenrique asuiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT mauriellomatthewlouis suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT tantivasadakarnnantanick suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT moramendozamarcoantonio suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT lincolnemmanuelthierry suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT hongrace suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT nowruziparsa suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT simondorien suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT hansenluke suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT goenawannathanielh suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT kimjoshua suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT gowdanikhil suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT jurafskydan suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy AT paredespabloenrique suiteofmobileconversationalagentsfordailystressmanagementpopbotsmixedmethodsexploratorystudy |