Cargando…
Improving deconvolution methods in biology through open innovation competitions: an application to the connectivity map
MOTIVATION: Do machine learning methods improve standard deconvolution techniques for gene expression data? This article uses a unique new dataset combined with an open innovation competition to evaluate a wide range of approaches developed by 294 competitors from 20 countries. The competition’s obj...
Autores principales: | Blasco, Andrea, Natoli, Ted, Endres, Michael G, Sergeev, Rinat A, Randazzo, Steven, Paik, Jin H, Macaluso, N J Maximilian, Narayan, Rajiv, Lu, Xiaodong, Peck, David, Lakhani, Karim R, Subramanian, Aravind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479655/ https://www.ncbi.nlm.nih.gov/pubmed/33824954 http://dx.doi.org/10.1093/bioinformatics/btab192 |
Ejemplares similares
-
Advancing computational biology and bioinformatics research through open innovation competitions
por: Blasco, Andrea, et al.
Publicado: (2019) -
Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map
por: Smith, Ian, et al.
Publicado: (2017) -
The GCTx format and cmap{Py, R, M, J} packages: resources for optimized storage and integrated traversal of annotated dense matrices
por: Enache, Oana M, et al.
Publicado: (2019) -
Experiments in Open Innovation at Harvard Medical School
por: Lakhani, Karim
Publicado: (2013) -
Using Open Innovation to Identify the Best Ideas
por: Lakhani, Karim
Publicado: (2013)