Cargando…
Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug–drug links based on graph neural network
MOTIVATION: Breast cancer is one of the leading causes of cancer deaths among women worldwide. It is necessary to develop new breast cancer drugs because of the shortcomings of existing therapies. The traditional discovery process is time-consuming and expensive. Repositioning of clinically approved...
Autores principales: | Cui, Chen, Ding, Xiaoyu, Wang, Dingyan, Chen, Lifan, Xiao, Fu, Xu, Tingyang, Zheng, Mingyue, Luo, Xiaomin, Jiang, Hualiang, Chen, Kaixian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479657/ https://www.ncbi.nlm.nih.gov/pubmed/33739367 http://dx.doi.org/10.1093/bioinformatics/btab191 |
Ejemplares similares
-
Drug target inference by mining transcriptional data using a novel graph convolutional network framework
por: Zhong, Feisheng, et al.
Publicado: (2021) -
DrugSpaceX: a large screenable and synthetically tractable database extending drug space
por: Yang, Tianbiao, et al.
Publicado: (2020) -
A hybrid framework for improving uncertainty quantification in deep learning-based QSAR regression modeling
por: Wang, Dingyan, et al.
Publicado: (2021) -
Improving the Virtual Screening Ability of Target-Specific Scoring Functions Using Deep Learning Methods
por: Wang, Dingyan, et al.
Publicado: (2019) -
DrugRep-HeSiaGraph: when heterogenous siamese neural network meets knowledge graphs for drug repurposing
por: Ghorbanali, Zahra, et al.
Publicado: (2023)