Cargando…
GPDBN: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction
MOTIVATION: Breast cancer is a very heterogeneous disease and there is an urgent need to design computational methods that can accurately predict the prognosis of breast cancer for appropriate therapeutic regime. Recently, deep learning-based methods have achieved great success in prognosis predicti...
Autores principales: | Wang, Zhiqin, Li, Ruiqing, Wang, Minghui, Li, Ao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479662/ https://www.ncbi.nlm.nih.gov/pubmed/33734318 http://dx.doi.org/10.1093/bioinformatics/btab185 |
Ejemplares similares
-
HFBSurv: hierarchical multimodal fusion with factorized bilinear models for cancer survival prediction
por: Li, Ruiqing, et al.
Publicado: (2022) -
Deep Modular Bilinear Attention Network for Visual Question Answering
por: Yan, Feng, et al.
Publicado: (2022) -
Bilinearity in Spatiotemporal Integration of Synaptic Inputs
por: Li, Songting, et al.
Publicado: (2014) -
Analytic-bilinear approach to integrable hierarchies
por: Bogdanov, L V
Publicado: (1999) -
Bilinear Control Systems
por: Elliott, David
Publicado: (2009)