Cargando…

PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples

MOTIVATION: A major challenge in analyzing cancer patient transcriptomes is that the tumors are inherently heterogeneous and evolving. We analyzed 214 bulk RNA samples of a longitudinal, prospective ovarian cancer cohort and found that the sample composition changes systematically due to chemotherap...

Descripción completa

Detalles Bibliográficos
Autores principales: Häkkinen, Antti, Zhang, Kaiyang, Alkodsi, Amjad, Andersson, Noora, Erkan, Erdogan Pekcan, Dai, Jun, Kaipio, Katja, Lamminen, Tarja, Mansuri, Naziha, Huhtinen, Kaisa, Vähärautio, Anna, Carpén, Olli, Hynninen, Johanna, Hietanen, Sakari, Lehtonen, Rainer, Hautaniemi, Sampsa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479664/
https://www.ncbi.nlm.nih.gov/pubmed/33720334
http://dx.doi.org/10.1093/bioinformatics/btab178
_version_ 1784576307680509952
author Häkkinen, Antti
Zhang, Kaiyang
Alkodsi, Amjad
Andersson, Noora
Erkan, Erdogan Pekcan
Dai, Jun
Kaipio, Katja
Lamminen, Tarja
Mansuri, Naziha
Huhtinen, Kaisa
Vähärautio, Anna
Carpén, Olli
Hynninen, Johanna
Hietanen, Sakari
Lehtonen, Rainer
Hautaniemi, Sampsa
author_facet Häkkinen, Antti
Zhang, Kaiyang
Alkodsi, Amjad
Andersson, Noora
Erkan, Erdogan Pekcan
Dai, Jun
Kaipio, Katja
Lamminen, Tarja
Mansuri, Naziha
Huhtinen, Kaisa
Vähärautio, Anna
Carpén, Olli
Hynninen, Johanna
Hietanen, Sakari
Lehtonen, Rainer
Hautaniemi, Sampsa
author_sort Häkkinen, Antti
collection PubMed
description MOTIVATION: A major challenge in analyzing cancer patient transcriptomes is that the tumors are inherently heterogeneous and evolving. We analyzed 214 bulk RNA samples of a longitudinal, prospective ovarian cancer cohort and found that the sample composition changes systematically due to chemotherapy and between the anatomical sites, preventing direct comparison of treatment-naive and treated samples. RESULTS: To overcome this, we developed PRISM, a latent statistical framework to simultaneously extract the sample composition and cell-type-specific whole-transcriptome profiles adapted to each individual sample. Our results indicate that the PRISM-derived composition-free transcriptomic profiles and signatures derived from them predict the patient response better than the composite raw bulk data. We validated our findings in independent ovarian cancer and melanoma cohorts, and verified that PRISM accurately estimates the composition and cell-type-specific expression through whole-genome sequencing and RNA in situ hybridization experiments. AVAILABILITYAND IMPLEMENTATION: https://bitbucket.org/anthakki/prism. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-8479664
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-84796642021-09-30 PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples Häkkinen, Antti Zhang, Kaiyang Alkodsi, Amjad Andersson, Noora Erkan, Erdogan Pekcan Dai, Jun Kaipio, Katja Lamminen, Tarja Mansuri, Naziha Huhtinen, Kaisa Vähärautio, Anna Carpén, Olli Hynninen, Johanna Hietanen, Sakari Lehtonen, Rainer Hautaniemi, Sampsa Bioinformatics Original Papers MOTIVATION: A major challenge in analyzing cancer patient transcriptomes is that the tumors are inherently heterogeneous and evolving. We analyzed 214 bulk RNA samples of a longitudinal, prospective ovarian cancer cohort and found that the sample composition changes systematically due to chemotherapy and between the anatomical sites, preventing direct comparison of treatment-naive and treated samples. RESULTS: To overcome this, we developed PRISM, a latent statistical framework to simultaneously extract the sample composition and cell-type-specific whole-transcriptome profiles adapted to each individual sample. Our results indicate that the PRISM-derived composition-free transcriptomic profiles and signatures derived from them predict the patient response better than the composite raw bulk data. We validated our findings in independent ovarian cancer and melanoma cohorts, and verified that PRISM accurately estimates the composition and cell-type-specific expression through whole-genome sequencing and RNA in situ hybridization experiments. AVAILABILITYAND IMPLEMENTATION: https://bitbucket.org/anthakki/prism. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2021-03-15 /pmc/articles/PMC8479664/ /pubmed/33720334 http://dx.doi.org/10.1093/bioinformatics/btab178 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Häkkinen, Antti
Zhang, Kaiyang
Alkodsi, Amjad
Andersson, Noora
Erkan, Erdogan Pekcan
Dai, Jun
Kaipio, Katja
Lamminen, Tarja
Mansuri, Naziha
Huhtinen, Kaisa
Vähärautio, Anna
Carpén, Olli
Hynninen, Johanna
Hietanen, Sakari
Lehtonen, Rainer
Hautaniemi, Sampsa
PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples
title PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples
title_full PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples
title_fullStr PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples
title_full_unstemmed PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples
title_short PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples
title_sort prism: recovering cell-type-specific expression profiles from individual composite rna-seq samples
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479664/
https://www.ncbi.nlm.nih.gov/pubmed/33720334
http://dx.doi.org/10.1093/bioinformatics/btab178
work_keys_str_mv AT hakkinenantti prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT zhangkaiyang prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT alkodsiamjad prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT anderssonnoora prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT erkanerdoganpekcan prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT daijun prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT kaipiokatja prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT lamminentarja prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT mansurinaziha prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT huhtinenkaisa prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT vaharautioanna prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT carpenolli prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT hynninenjohanna prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT hietanensakari prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT lehtonenrainer prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples
AT hautaniemisampsa prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples