Cargando…
PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples
MOTIVATION: A major challenge in analyzing cancer patient transcriptomes is that the tumors are inherently heterogeneous and evolving. We analyzed 214 bulk RNA samples of a longitudinal, prospective ovarian cancer cohort and found that the sample composition changes systematically due to chemotherap...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479664/ https://www.ncbi.nlm.nih.gov/pubmed/33720334 http://dx.doi.org/10.1093/bioinformatics/btab178 |
_version_ | 1784576307680509952 |
---|---|
author | Häkkinen, Antti Zhang, Kaiyang Alkodsi, Amjad Andersson, Noora Erkan, Erdogan Pekcan Dai, Jun Kaipio, Katja Lamminen, Tarja Mansuri, Naziha Huhtinen, Kaisa Vähärautio, Anna Carpén, Olli Hynninen, Johanna Hietanen, Sakari Lehtonen, Rainer Hautaniemi, Sampsa |
author_facet | Häkkinen, Antti Zhang, Kaiyang Alkodsi, Amjad Andersson, Noora Erkan, Erdogan Pekcan Dai, Jun Kaipio, Katja Lamminen, Tarja Mansuri, Naziha Huhtinen, Kaisa Vähärautio, Anna Carpén, Olli Hynninen, Johanna Hietanen, Sakari Lehtonen, Rainer Hautaniemi, Sampsa |
author_sort | Häkkinen, Antti |
collection | PubMed |
description | MOTIVATION: A major challenge in analyzing cancer patient transcriptomes is that the tumors are inherently heterogeneous and evolving. We analyzed 214 bulk RNA samples of a longitudinal, prospective ovarian cancer cohort and found that the sample composition changes systematically due to chemotherapy and between the anatomical sites, preventing direct comparison of treatment-naive and treated samples. RESULTS: To overcome this, we developed PRISM, a latent statistical framework to simultaneously extract the sample composition and cell-type-specific whole-transcriptome profiles adapted to each individual sample. Our results indicate that the PRISM-derived composition-free transcriptomic profiles and signatures derived from them predict the patient response better than the composite raw bulk data. We validated our findings in independent ovarian cancer and melanoma cohorts, and verified that PRISM accurately estimates the composition and cell-type-specific expression through whole-genome sequencing and RNA in situ hybridization experiments. AVAILABILITYAND IMPLEMENTATION: https://bitbucket.org/anthakki/prism. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-8479664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-84796642021-09-30 PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples Häkkinen, Antti Zhang, Kaiyang Alkodsi, Amjad Andersson, Noora Erkan, Erdogan Pekcan Dai, Jun Kaipio, Katja Lamminen, Tarja Mansuri, Naziha Huhtinen, Kaisa Vähärautio, Anna Carpén, Olli Hynninen, Johanna Hietanen, Sakari Lehtonen, Rainer Hautaniemi, Sampsa Bioinformatics Original Papers MOTIVATION: A major challenge in analyzing cancer patient transcriptomes is that the tumors are inherently heterogeneous and evolving. We analyzed 214 bulk RNA samples of a longitudinal, prospective ovarian cancer cohort and found that the sample composition changes systematically due to chemotherapy and between the anatomical sites, preventing direct comparison of treatment-naive and treated samples. RESULTS: To overcome this, we developed PRISM, a latent statistical framework to simultaneously extract the sample composition and cell-type-specific whole-transcriptome profiles adapted to each individual sample. Our results indicate that the PRISM-derived composition-free transcriptomic profiles and signatures derived from them predict the patient response better than the composite raw bulk data. We validated our findings in independent ovarian cancer and melanoma cohorts, and verified that PRISM accurately estimates the composition and cell-type-specific expression through whole-genome sequencing and RNA in situ hybridization experiments. AVAILABILITYAND IMPLEMENTATION: https://bitbucket.org/anthakki/prism. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2021-03-15 /pmc/articles/PMC8479664/ /pubmed/33720334 http://dx.doi.org/10.1093/bioinformatics/btab178 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Häkkinen, Antti Zhang, Kaiyang Alkodsi, Amjad Andersson, Noora Erkan, Erdogan Pekcan Dai, Jun Kaipio, Katja Lamminen, Tarja Mansuri, Naziha Huhtinen, Kaisa Vähärautio, Anna Carpén, Olli Hynninen, Johanna Hietanen, Sakari Lehtonen, Rainer Hautaniemi, Sampsa PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples |
title | PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples |
title_full | PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples |
title_fullStr | PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples |
title_full_unstemmed | PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples |
title_short | PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples |
title_sort | prism: recovering cell-type-specific expression profiles from individual composite rna-seq samples |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479664/ https://www.ncbi.nlm.nih.gov/pubmed/33720334 http://dx.doi.org/10.1093/bioinformatics/btab178 |
work_keys_str_mv | AT hakkinenantti prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT zhangkaiyang prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT alkodsiamjad prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT anderssonnoora prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT erkanerdoganpekcan prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT daijun prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT kaipiokatja prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT lamminentarja prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT mansurinaziha prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT huhtinenkaisa prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT vaharautioanna prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT carpenolli prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT hynninenjohanna prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT hietanensakari prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT lehtonenrainer prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples AT hautaniemisampsa prismrecoveringcelltypespecificexpressionprofilesfromindividualcompositernaseqsamples |