Cargando…
L(2,1)-norm regularized multivariate regression model with applications to genomic prediction
MOTIVATION: Genomic selection (GS) is currently deemed the most effective approach to speed up breeding of agricultural varieties. It has been recognized that consideration of multiple traits in GS can improve accuracy of prediction for traits of low heritability. However, since GS forgoes statistic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479665/ https://www.ncbi.nlm.nih.gov/pubmed/33774677 http://dx.doi.org/10.1093/bioinformatics/btab212 |
_version_ | 1784576307948945408 |
---|---|
author | Mbebi, Alain J Tong, Hao Nikoloski, Zoran |
author_facet | Mbebi, Alain J Tong, Hao Nikoloski, Zoran |
author_sort | Mbebi, Alain J |
collection | PubMed |
description | MOTIVATION: Genomic selection (GS) is currently deemed the most effective approach to speed up breeding of agricultural varieties. It has been recognized that consideration of multiple traits in GS can improve accuracy of prediction for traits of low heritability. However, since GS forgoes statistical testing with the idea of improving predictions, it does not facilitate mechanistic understanding of the contribution of particular single nucleotide polymorphisms (SNP). RESULTS: Here, we propose a [Formula: see text]-norm regularized multivariate regression model and devise a fast and efficient iterative optimization algorithm, called [Formula: see text]-joint, applicable in multi-trait GS. The usage of the [Formula: see text]-norm facilitates variable selection in a penalized multivariate regression that considers the relation between individuals, when the number of SNPs is much larger than the number of individuals. The capacity for variable selection allows us to define master regulators that can be used in a multi-trait GS setting to dissect the genetic architecture of the analyzed traits. Our comparative analyses demonstrate that the proposed model is a favorable candidate compared to existing state-of-the-art approaches. Prediction and variable selection with datasets from Brassica napus, wheat and Arabidopsis thaliana diversity panels are conducted to further showcase the performance of the proposed model. AVAILABILITY AND IMPLEMENTATION: : The model is implemented using R programming language and the code is freely available from https://github.com/alainmbebi/L21-norm-GS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-8479665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-84796652021-09-30 L(2,1)-norm regularized multivariate regression model with applications to genomic prediction Mbebi, Alain J Tong, Hao Nikoloski, Zoran Bioinformatics Original Papers MOTIVATION: Genomic selection (GS) is currently deemed the most effective approach to speed up breeding of agricultural varieties. It has been recognized that consideration of multiple traits in GS can improve accuracy of prediction for traits of low heritability. However, since GS forgoes statistical testing with the idea of improving predictions, it does not facilitate mechanistic understanding of the contribution of particular single nucleotide polymorphisms (SNP). RESULTS: Here, we propose a [Formula: see text]-norm regularized multivariate regression model and devise a fast and efficient iterative optimization algorithm, called [Formula: see text]-joint, applicable in multi-trait GS. The usage of the [Formula: see text]-norm facilitates variable selection in a penalized multivariate regression that considers the relation between individuals, when the number of SNPs is much larger than the number of individuals. The capacity for variable selection allows us to define master regulators that can be used in a multi-trait GS setting to dissect the genetic architecture of the analyzed traits. Our comparative analyses demonstrate that the proposed model is a favorable candidate compared to existing state-of-the-art approaches. Prediction and variable selection with datasets from Brassica napus, wheat and Arabidopsis thaliana diversity panels are conducted to further showcase the performance of the proposed model. AVAILABILITY AND IMPLEMENTATION: : The model is implemented using R programming language and the code is freely available from https://github.com/alainmbebi/L21-norm-GS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2021-03-28 /pmc/articles/PMC8479665/ /pubmed/33774677 http://dx.doi.org/10.1093/bioinformatics/btab212 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Papers Mbebi, Alain J Tong, Hao Nikoloski, Zoran L(2,1)-norm regularized multivariate regression model with applications to genomic prediction |
title | L(2,1)-norm regularized multivariate regression model with applications to genomic prediction |
title_full | L(2,1)-norm regularized multivariate regression model with applications to genomic prediction |
title_fullStr | L(2,1)-norm regularized multivariate regression model with applications to genomic prediction |
title_full_unstemmed | L(2,1)-norm regularized multivariate regression model with applications to genomic prediction |
title_short | L(2,1)-norm regularized multivariate regression model with applications to genomic prediction |
title_sort | l(2,1)-norm regularized multivariate regression model with applications to genomic prediction |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479665/ https://www.ncbi.nlm.nih.gov/pubmed/33774677 http://dx.doi.org/10.1093/bioinformatics/btab212 |
work_keys_str_mv | AT mbebialainj l21normregularizedmultivariateregressionmodelwithapplicationstogenomicprediction AT tonghao l21normregularizedmultivariateregressionmodelwithapplicationstogenomicprediction AT nikoloskizoran l21normregularizedmultivariateregressionmodelwithapplicationstogenomicprediction |