Cargando…
L(2,1)-norm regularized multivariate regression model with applications to genomic prediction
MOTIVATION: Genomic selection (GS) is currently deemed the most effective approach to speed up breeding of agricultural varieties. It has been recognized that consideration of multiple traits in GS can improve accuracy of prediction for traits of low heritability. However, since GS forgoes statistic...
Autores principales: | Mbebi, Alain J, Tong, Hao, Nikoloski, Zoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479665/ https://www.ncbi.nlm.nih.gov/pubmed/33774677 http://dx.doi.org/10.1093/bioinformatics/btab212 |
Ejemplares similares
-
Gene regulatory network inference using mixed-norms regularized multivariate model with covariance selection
por: Mbebi, Alain J., et al.
Publicado: (2023) -
Discovering Temporal Patterns in Longitudinal Nontargeted Metabolomics Data via Group and Nuclear Norm Regularized Multivariate Regression
por: Lin, Zhaozhou, et al.
Publicado: (2020) -
A comparative analysis of genomic and phenomic predictions of growth-related traits in 3-way coffee hybrids
por: Mbebi, Alain J, et al.
Publicado: (2022) -
Cellular determinants of metabolite concentration ranges
por: Küken, Anika, et al.
Publicado: (2019) -
Segmentation of biological multivariate time-series data
por: Omranian, Nooshin, et al.
Publicado: (2015)