Cargando…

Modeling multifunctionality of genes with secondary gene co-expression networks in human brain provides novel disease insights

MOTIVATION: Co-expression networks are a powerful gene expression analysis method to study how genes co-express together in clusters with functional coherence that usually resemble specific cell type behavior for the genes involved. They can be applied to bulk-tissue gene expression profiling and as...

Descripción completa

Detalles Bibliográficos
Autores principales: Sánchez, Juan A, Gil-Martinez, Ana L, Cisterna, Alejandro, García-Ruíz, Sonia, Gómez-Pascual, Alicia, Reynolds, Regina H, Nalls, Mike, Hardy, John, Ryten, Mina, Botía, Juan A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479669/
https://www.ncbi.nlm.nih.gov/pubmed/33734320
http://dx.doi.org/10.1093/bioinformatics/btab175
Descripción
Sumario:MOTIVATION: Co-expression networks are a powerful gene expression analysis method to study how genes co-express together in clusters with functional coherence that usually resemble specific cell type behavior for the genes involved. They can be applied to bulk-tissue gene expression profiling and assign function, and usually cell type specificity, to a high percentage of the gene pool used to construct the network. One of the limitations of this method is that each gene is predicted to play a role in a specific set of coherent functions in a single cell type (i.e. at most we get a single <gene, function, cell type> for each gene). We present here GMSCA (Gene Multifunctionality Secondary Co-expression Analysis), a software tool that exploits the co-expression paradigm to increase the number of functions and cell types ascribed to a gene in bulk-tissue co-expression networks. RESULTS: We applied GMSCA to 27 co-expression networks derived from bulk-tissue gene expression profiling of a variety of brain tissues. Neurons and glial cells (microglia, astrocytes and oligodendrocytes) were considered the main cell types. Applying this approach, we increase the overall number of predicted triplets <gene, function, cell type> by 46.73%. Moreover, GMSCA predicts that the SNCA gene, traditionally associated to work mainly in neurons, also plays a relevant function in oligodendrocytes. AVAILABILITYAND IMPLEMENTATION: The tool is available at GitHub, https://github.com/drlaguna/GMSCA as open-source software. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.