Cargando…

multiclassPairs: an R package to train multiclass pair-based classifier

MOTIVATION: k–Top Scoring Pairs (kTSP) algorithms utilize in-sample gene expression feature pair rules for class prediction, and have demonstrated excellent performance and robustness. The available packages and tools primarily focus on binary prediction (i.e. two classes). However, many real-world...

Descripción completa

Detalles Bibliográficos
Autores principales: Marzouka, Nour-Al-Dain, Eriksson, Pontus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479681/
https://www.ncbi.nlm.nih.gov/pubmed/33543757
http://dx.doi.org/10.1093/bioinformatics/btab088
_version_ 1784576310550462464
author Marzouka, Nour-Al-Dain
Eriksson, Pontus
author_facet Marzouka, Nour-Al-Dain
Eriksson, Pontus
author_sort Marzouka, Nour-Al-Dain
collection PubMed
description MOTIVATION: k–Top Scoring Pairs (kTSP) algorithms utilize in-sample gene expression feature pair rules for class prediction, and have demonstrated excellent performance and robustness. The available packages and tools primarily focus on binary prediction (i.e. two classes). However, many real-world classification problems e.g. tumor subtype prediction, are multiclass tasks. RESULTS: Here, we present multiclassPairs, an R package to train pair-based single sample classifiers for multiclass problems. multiclassPairs offers two main methods to build multiclass prediction models, either using a one-versus-rest kTSP scheme or through a novel pair-based Random Forest approach. The package also provides options for dealing with class imbalances, multiplatform training, missing features in test data and visualization of training and test results. AVAILABILITY AND IMPLEMENTATION: ‘multiclassPairs’ package is available on CRAN servers and GitHub: https://github.com/NourMarzouka/multiclassPairs. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-8479681
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-84796812021-09-30 multiclassPairs: an R package to train multiclass pair-based classifier Marzouka, Nour-Al-Dain Eriksson, Pontus Bioinformatics Applications Notes MOTIVATION: k–Top Scoring Pairs (kTSP) algorithms utilize in-sample gene expression feature pair rules for class prediction, and have demonstrated excellent performance and robustness. The available packages and tools primarily focus on binary prediction (i.e. two classes). However, many real-world classification problems e.g. tumor subtype prediction, are multiclass tasks. RESULTS: Here, we present multiclassPairs, an R package to train pair-based single sample classifiers for multiclass problems. multiclassPairs offers two main methods to build multiclass prediction models, either using a one-versus-rest kTSP scheme or through a novel pair-based Random Forest approach. The package also provides options for dealing with class imbalances, multiplatform training, missing features in test data and visualization of training and test results. AVAILABILITY AND IMPLEMENTATION: ‘multiclassPairs’ package is available on CRAN servers and GitHub: https://github.com/NourMarzouka/multiclassPairs. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2021-02-05 /pmc/articles/PMC8479681/ /pubmed/33543757 http://dx.doi.org/10.1093/bioinformatics/btab088 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Notes
Marzouka, Nour-Al-Dain
Eriksson, Pontus
multiclassPairs: an R package to train multiclass pair-based classifier
title multiclassPairs: an R package to train multiclass pair-based classifier
title_full multiclassPairs: an R package to train multiclass pair-based classifier
title_fullStr multiclassPairs: an R package to train multiclass pair-based classifier
title_full_unstemmed multiclassPairs: an R package to train multiclass pair-based classifier
title_short multiclassPairs: an R package to train multiclass pair-based classifier
title_sort multiclasspairs: an r package to train multiclass pair-based classifier
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479681/
https://www.ncbi.nlm.nih.gov/pubmed/33543757
http://dx.doi.org/10.1093/bioinformatics/btab088
work_keys_str_mv AT marzoukanouraldain multiclasspairsanrpackagetotrainmulticlasspairbasedclassifier
AT erikssonpontus multiclasspairsanrpackagetotrainmulticlasspairbasedclassifier