Cargando…

multiTFA: a Python package for multi-variate thermodynamics-based flux analysis

MOTIVATION: We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by introducing multivariate treatment of thermodynamic variables and leveraging component contribution, the state-of-the-art implementation of the group contribution methodology. Overall, the method greatly r...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahamkali, Vishnuvardhan, McCubbin, Tim, Beber, Moritz Emanuel, Noor, Elad, Marcellin, Esteban, Nielsen, Lars Keld
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479682/
https://www.ncbi.nlm.nih.gov/pubmed/33682879
http://dx.doi.org/10.1093/bioinformatics/btab151
_version_ 1784576310786392064
author Mahamkali, Vishnuvardhan
McCubbin, Tim
Beber, Moritz Emanuel
Noor, Elad
Marcellin, Esteban
Nielsen, Lars Keld
author_facet Mahamkali, Vishnuvardhan
McCubbin, Tim
Beber, Moritz Emanuel
Noor, Elad
Marcellin, Esteban
Nielsen, Lars Keld
author_sort Mahamkali, Vishnuvardhan
collection PubMed
description MOTIVATION: We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by introducing multivariate treatment of thermodynamic variables and leveraging component contribution, the state-of-the-art implementation of the group contribution methodology. Overall, the method greatly reduces the uncertainty of thermodynamic variables. RESULTS: We present multiTFA, a Python implementation of our framework. We evaluated our application using the core Escherichia coli model and achieved a median reduction of 6.8 kJ/mol in reaction Gibbs free energy ranges, while three out of 12 reactions in glycolysis changed from reversible to irreversible. AVAILABILITY AND IMPLEMENTATION: Our framework along with documentation is available on https://github.com/biosustain/multitfa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-8479682
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-84796822021-09-30 multiTFA: a Python package for multi-variate thermodynamics-based flux analysis Mahamkali, Vishnuvardhan McCubbin, Tim Beber, Moritz Emanuel Noor, Elad Marcellin, Esteban Nielsen, Lars Keld Bioinformatics Applications Notes MOTIVATION: We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by introducing multivariate treatment of thermodynamic variables and leveraging component contribution, the state-of-the-art implementation of the group contribution methodology. Overall, the method greatly reduces the uncertainty of thermodynamic variables. RESULTS: We present multiTFA, a Python implementation of our framework. We evaluated our application using the core Escherichia coli model and achieved a median reduction of 6.8 kJ/mol in reaction Gibbs free energy ranges, while three out of 12 reactions in glycolysis changed from reversible to irreversible. AVAILABILITY AND IMPLEMENTATION: Our framework along with documentation is available on https://github.com/biosustain/multitfa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2021-03-03 /pmc/articles/PMC8479682/ /pubmed/33682879 http://dx.doi.org/10.1093/bioinformatics/btab151 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Applications Notes
Mahamkali, Vishnuvardhan
McCubbin, Tim
Beber, Moritz Emanuel
Noor, Elad
Marcellin, Esteban
Nielsen, Lars Keld
multiTFA: a Python package for multi-variate thermodynamics-based flux analysis
title multiTFA: a Python package for multi-variate thermodynamics-based flux analysis
title_full multiTFA: a Python package for multi-variate thermodynamics-based flux analysis
title_fullStr multiTFA: a Python package for multi-variate thermodynamics-based flux analysis
title_full_unstemmed multiTFA: a Python package for multi-variate thermodynamics-based flux analysis
title_short multiTFA: a Python package for multi-variate thermodynamics-based flux analysis
title_sort multitfa: a python package for multi-variate thermodynamics-based flux analysis
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479682/
https://www.ncbi.nlm.nih.gov/pubmed/33682879
http://dx.doi.org/10.1093/bioinformatics/btab151
work_keys_str_mv AT mahamkalivishnuvardhan multitfaapythonpackageformultivariatethermodynamicsbasedfluxanalysis
AT mccubbintim multitfaapythonpackageformultivariatethermodynamicsbasedfluxanalysis
AT bebermoritzemanuel multitfaapythonpackageformultivariatethermodynamicsbasedfluxanalysis
AT noorelad multitfaapythonpackageformultivariatethermodynamicsbasedfluxanalysis
AT marcellinesteban multitfaapythonpackageformultivariatethermodynamicsbasedfluxanalysis
AT nielsenlarskeld multitfaapythonpackageformultivariatethermodynamicsbasedfluxanalysis