Cargando…

Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile

[Image: see text] Protein therapeutics have a major role in medicine in that they are used to treat diverse pathologies. Their three-dimensional structures not only offer higher specificity and lower toxicity than small organic compounds but also make them less stable, limiting their in vivo half-li...

Descripción completa

Detalles Bibliográficos
Autores principales: Contreras-Montoya, Rafael, Arredondo-Amador, María, Escolano-Casado, Guillermo, Mañas-Torres, Mari C., González, Mercedes, Conejero-Muriel, Mayte, Bhatia, Vaibhav, Díaz-Mochón, Juan J., Martínez-Augustin, Olga, de Medina, Fermín Sánchez, Lopez-Lopez, Modesto T., Conejero-Lara, Francisco, Gavira, José A., de Cienfuegos, Luis Álvarez
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479728/
https://www.ncbi.nlm.nih.gov/pubmed/33661596
http://dx.doi.org/10.1021/acsami.1c00639
_version_ 1784576321242791936
author Contreras-Montoya, Rafael
Arredondo-Amador, María
Escolano-Casado, Guillermo
Mañas-Torres, Mari C.
González, Mercedes
Conejero-Muriel, Mayte
Bhatia, Vaibhav
Díaz-Mochón, Juan J.
Martínez-Augustin, Olga
de Medina, Fermín Sánchez
Lopez-Lopez, Modesto T.
Conejero-Lara, Francisco
Gavira, José A.
de Cienfuegos, Luis Álvarez
author_facet Contreras-Montoya, Rafael
Arredondo-Amador, María
Escolano-Casado, Guillermo
Mañas-Torres, Mari C.
González, Mercedes
Conejero-Muriel, Mayte
Bhatia, Vaibhav
Díaz-Mochón, Juan J.
Martínez-Augustin, Olga
de Medina, Fermín Sánchez
Lopez-Lopez, Modesto T.
Conejero-Lara, Francisco
Gavira, José A.
de Cienfuegos, Luis Álvarez
author_sort Contreras-Montoya, Rafael
collection PubMed
description [Image: see text] Protein therapeutics have a major role in medicine in that they are used to treat diverse pathologies. Their three-dimensional structures not only offer higher specificity and lower toxicity than small organic compounds but also make them less stable, limiting their in vivo half-life. Protein analogues obtained by recombinant DNA technology or by chemical modification and/or the use of drug delivery vehicles has been adopted to improve or modulate the in vivo pharmacological activity of proteins. Nevertheless, strategies to improve the shelf-life of protein pharmaceuticals have been less explored, which has challenged the preservation of their activity. Herein, we present a methodology that simultaneously increases the stability of proteins and modulates the release profile, and implement it with human insulin as a proof of concept. Two novel thermally stable insulin composite crystal formulations intended for the therapeutic treatment of diabetes are reported. These composite crystals have been obtained by crystallizing insulin in agarose and fluorenylmethoxycarbonyl-dialanine (Fmoc-AA) hydrogels. This process affords composite crystals, in which hydrogel fibers are occluded. The insulin in both crystalline formulations remains unaltered at 50 °C for 7 days. Differential scanning calorimetry, high-performance liquid chromatography, mass spectrometry, and in vivo studies have shown that insulin does not degrade after the heat treatment. The nature of the hydrogel modifies the physicochemical properties of the crystals. Crystals grown in Fmoc-AA hydrogel are more stable and have a slower dissolution rate than crystals grown in agarose. This methodology paves the way for the development of more stable protein pharmaceuticals overcoming some of the existing limitations.
format Online
Article
Text
id pubmed-8479728
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-84797282021-09-29 Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile Contreras-Montoya, Rafael Arredondo-Amador, María Escolano-Casado, Guillermo Mañas-Torres, Mari C. González, Mercedes Conejero-Muriel, Mayte Bhatia, Vaibhav Díaz-Mochón, Juan J. Martínez-Augustin, Olga de Medina, Fermín Sánchez Lopez-Lopez, Modesto T. Conejero-Lara, Francisco Gavira, José A. de Cienfuegos, Luis Álvarez ACS Appl Mater Interfaces [Image: see text] Protein therapeutics have a major role in medicine in that they are used to treat diverse pathologies. Their three-dimensional structures not only offer higher specificity and lower toxicity than small organic compounds but also make them less stable, limiting their in vivo half-life. Protein analogues obtained by recombinant DNA technology or by chemical modification and/or the use of drug delivery vehicles has been adopted to improve or modulate the in vivo pharmacological activity of proteins. Nevertheless, strategies to improve the shelf-life of protein pharmaceuticals have been less explored, which has challenged the preservation of their activity. Herein, we present a methodology that simultaneously increases the stability of proteins and modulates the release profile, and implement it with human insulin as a proof of concept. Two novel thermally stable insulin composite crystal formulations intended for the therapeutic treatment of diabetes are reported. These composite crystals have been obtained by crystallizing insulin in agarose and fluorenylmethoxycarbonyl-dialanine (Fmoc-AA) hydrogels. This process affords composite crystals, in which hydrogel fibers are occluded. The insulin in both crystalline formulations remains unaltered at 50 °C for 7 days. Differential scanning calorimetry, high-performance liquid chromatography, mass spectrometry, and in vivo studies have shown that insulin does not degrade after the heat treatment. The nature of the hydrogel modifies the physicochemical properties of the crystals. Crystals grown in Fmoc-AA hydrogel are more stable and have a slower dissolution rate than crystals grown in agarose. This methodology paves the way for the development of more stable protein pharmaceuticals overcoming some of the existing limitations. American Chemical Society 2021-03-04 2021-03-17 /pmc/articles/PMC8479728/ /pubmed/33661596 http://dx.doi.org/10.1021/acsami.1c00639 Text en © 2021 American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Contreras-Montoya, Rafael
Arredondo-Amador, María
Escolano-Casado, Guillermo
Mañas-Torres, Mari C.
González, Mercedes
Conejero-Muriel, Mayte
Bhatia, Vaibhav
Díaz-Mochón, Juan J.
Martínez-Augustin, Olga
de Medina, Fermín Sánchez
Lopez-Lopez, Modesto T.
Conejero-Lara, Francisco
Gavira, José A.
de Cienfuegos, Luis Álvarez
Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile
title Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile
title_full Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile
title_fullStr Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile
title_full_unstemmed Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile
title_short Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile
title_sort insulin crystals grown in short-peptide supramolecular hydrogels show enhanced thermal stability and slower release profile
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479728/
https://www.ncbi.nlm.nih.gov/pubmed/33661596
http://dx.doi.org/10.1021/acsami.1c00639
work_keys_str_mv AT contrerasmontoyarafael insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT arredondoamadormaria insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT escolanocasadoguillermo insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT manastorresmaric insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT gonzalezmercedes insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT conejeromurielmayte insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT bhatiavaibhav insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT diazmochonjuanj insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT martinezaugustinolga insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT demedinaferminsanchez insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT lopezlopezmodestot insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT conejerolarafrancisco insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT gavirajosea insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile
AT decienfuegosluisalvarez insulincrystalsgrowninshortpeptidesupramolecularhydrogelsshowenhancedthermalstabilityandslowerreleaseprofile