Cargando…
Statistical model building: Background “knowledge” based on inappropriate preselection causes misspecification
BACKGROUND: Statistical model building requires selection of variables for a model depending on the model’s aim. In descriptive and explanatory models, a common recommendation often met in the literature is to include all variables in the model which are assumed or known to be associated with the ou...
Autores principales: | Hafermann, Lorena, Becher, Heiko, Herrmann, Carolin, Klein, Nadja, Heinze, Georg, Rauch, Geraldine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480029/ https://www.ncbi.nlm.nih.gov/pubmed/34587892 http://dx.doi.org/10.1186/s12874-021-01373-z |
Ejemplares similares
-
Using Background Knowledge from Preceding Studies for Building a Random Forest Prediction Model: A Plasmode Simulation Study
por: Hafermann, Lorena, et al.
Publicado: (2022) -
Systematic review of education and practical guidance on regression modeling for medical researchers who lack a strong statistical background: Study protocol
por: Bach, Paul, et al.
Publicado: (2020) -
Review of guidance papers on regression modeling in statistical series of medical journals
por: Wallisch, Christine, et al.
Publicado: (2022) -
Causal Model Building in the Context of Cardiac Rehabilitation: A Systematic Review
por: Akbari, Nilufar, et al.
Publicado: (2023) -
Comprehensive survey among statistical members of medical ethics committees in Germany on their personal impression of completeness and correctness of biostatistical aspects of submitted study protocols
por: Rauch, Geraldine, et al.
Publicado: (2020)