Cargando…
Detecting selection in low-coverage high-throughput sequencing data using principal component analysis
BACKGROUND: Identification of selection signatures between populations is often an important part of a population genetic study. Leveraging high-throughput DNA sequencing larger sample sizes of populations with similar ancestries has become increasingly common. This has led to the need of methods ca...
Autores principales: | Meisner, Jonas, Albrechtsen, Anders, Hanghøj, Kristian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480091/ https://www.ncbi.nlm.nih.gov/pubmed/34587903 http://dx.doi.org/10.1186/s12859-021-04375-2 |
Ejemplares similares
-
Haplotype and population structure inference using neural networks in whole-genome sequencing data
por: Meisner, Jonas, et al.
Publicado: (2022) -
NGSremix: a software tool for estimating pairwise relatedness between admixed individuals from next-generation sequencing data
por: Nøhr, Anne Krogh, et al.
Publicado: (2021) -
Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding
por: Hanghøj, Kristian, et al.
Publicado: (2019) -
DamMet: ancient methylome mapping accounting for errors, true variants, and post-mortem DNA damage
por: Hanghøj, Kristian, et al.
Publicado: (2019) -
Super-sparse principal component analyses for high-throughput genomic data
por: Lee, Donghwan, et al.
Publicado: (2010)