Cargando…
Deep Learning Model to Predict Serious Infection Among Children With Central Venous Lines
Objective: Predict the onset of presumed serious infection, defined as a positive blood culture drawn and new antibiotic course of at least 4 days (PSI(*)), among pediatric patients with Central Venous Lines (CVLs). Design: Retrospective cohort study. Setting: Single academic children's hospita...
Autores principales: | Tabaie, Azade, Orenstein, Evan W., Nemati, Shamim, Basu, Rajit K., Clifford, Gari D., Kamaleswaran, Rishikesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480258/ https://www.ncbi.nlm.nih.gov/pubmed/34604142 http://dx.doi.org/10.3389/fped.2021.726870 |
Ejemplares similares
-
A Novel Technique to Identify Intimate Partner Violence in a Hospital Setting
por: Tabaie, Azade, et al.
Publicado: (2022) -
Identification of a pediatric acute hypoxemic respiratory failure signature in peripheral blood leukocytes at 24 hours post-ICU admission with machine learning
por: Grunwell, Jocelyn R., et al.
Publicado: (2023) -
eARDS: A multi-center validation of an interpretable machine learning algorithm of early onset Acute Respiratory Distress Syndrome (ARDS) among critically ill adults with COVID-19
por: Singhal, Lakshya, et al.
Publicado: (2021) -
Prediction of Acute Respiratory Failure Requiring Advanced Respiratory Support in Advance of Interventions and Treatment: A Multivariable Prediction Model From Electronic Medical Record Data
por: Wong, An-Kwok I., et al.
Publicado: (2021) -
Dynamic Biomarker Assessment: A Diagnostic Paradigm to Match the AKI Syndrome
por: Basu, Rajit K.
Publicado: (2020)