Cargando…
Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review
Machine learning methods have been frequently applied in the field of cognitive neuroscience in the last decade. A great deal of attention has been attracted to introduce machine learning methods to study the autism spectrum disorder (ASD) in order to find out its neurophysiological underpinnings. I...
Autores principales: | Liu, Meijie, Li, Baojuan, Hu, Dewen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480393/ https://www.ncbi.nlm.nih.gov/pubmed/34602966 http://dx.doi.org/10.3389/fnins.2021.697870 |
Ejemplares similares
-
ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data
por: Eslami, Taban, et al.
Publicado: (2019) -
Late fMRI Response Components Are Altered in Autism Spectrum Disorder
por: Murray, Scott O., et al.
Publicado: (2020) -
Detection of autism spectrum disorder using graph representation learning algorithms and deep neural network, based on fMRI signals
por: Yousefian, Ali, et al.
Publicado: (2023) -
Editorial: Mapping Psychopathology with fMRI and Effective Connectivity Analysis
por: Li, Baojuan, et al.
Publicado: (2017) -
On the generalizability of resting-state fMRI machine learning classifiers
por: Huf, Wolfgang, et al.
Publicado: (2014)