Cargando…
TSI-GNN: Extending Graph Neural Networks to Handle Missing Data in Temporal Settings
We present a novel approach for imputing missing data that incorporates temporal information into bipartite graphs through an extension of graph representation learning. Missing data is abundant in several domains, particularly when observations are made over time. Most imputation methods make stron...
Autores principales: | Gordon, David, Petousis, Panayiotis, Zheng, Henry, Zamanzadeh, Davina, Bui, Alex A.T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480427/ https://www.ncbi.nlm.nih.gov/pubmed/34604740 http://dx.doi.org/10.3389/fdata.2021.693869 |
Ejemplares similares
-
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
Deep Graph Mapper: Seeing Graphs Through the Neural Lens
por: Bodnar, Cristian, et al.
Publicado: (2021) -
Graph Neural Networks for Charged Particle Tracking on FPGAs
por: Elabd, Abdelrahman, et al.
Publicado: (2022) -
MARGIN: Uncovering Deep Neural Networks Using Graph Signal Analysis
por: Anirudh, Rushil, et al.
Publicado: (2021) -
IV-GNN : interval valued data handling using graph neural network
por: Dawn, Sucheta, et al.
Publicado: (2022)