Cargando…
Dice-XMBD: Deep Learning-Based Cell Segmentation for Imaging Mass Cytometry
Highly multiplexed imaging technology is a powerful tool to facilitate understanding the composition and interactions of cells in tumor microenvironments at subcellular resolution, which is crucial for both basic research and clinical applications. Imaging mass cytometry (IMC), a multiplex imaging m...
Autores principales: | Xiao, Xu, Qiao, Ying, Jiao, Yudi, Fu, Na, Yang, Wenxian, Wang, Liansheng, Yu, Rongshan, Han, Jiahuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480472/ https://www.ncbi.nlm.nih.gov/pubmed/34603385 http://dx.doi.org/10.3389/fgene.2021.721229 |
Ejemplares similares
-
Deep representation features from DreamDIA(XMBD) improve the analysis of data-independent acquisition proteomics
por: Gao, Mingxuan, et al.
Publicado: (2021) -
DAISM-DNN(XMBD): Highly accurate cell type proportion estimation with in silico data augmentation and deep neural networks
por: Lin, Yating, et al.
Publicado: (2022) -
Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
por: He, Qingzu, et al.
Publicado: (2023) -
Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
por: Lin, Yating, et al.
Publicado: (2022) -
UltraStrain: An NGS-Based Ultra Sensitive Strain Typing Method for Salmonella enterica
por: Yang, Wenxian, et al.
Publicado: (2019)