Cargando…
Learning the solution operator of parametric partial differential equations with physics-informed DeepONets
Partial differential equations (PDEs) play a central role in the mathematical analysis and modeling of complex dynamic processes across all corners of science and engineering. Their solution often requires laborious analytical or computational tools, associated with a cost that is markedly amplified...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480920/ https://www.ncbi.nlm.nih.gov/pubmed/34586842 http://dx.doi.org/10.1126/sciadv.abi8605 |
Sumario: | Partial differential equations (PDEs) play a central role in the mathematical analysis and modeling of complex dynamic processes across all corners of science and engineering. Their solution often requires laborious analytical or computational tools, associated with a cost that is markedly amplified when different scenarios need to be investigated, for example, corresponding to different initial or boundary conditions, different inputs, etc. In this work, we introduce physics-informed DeepONets, a deep learning framework for learning the solution operator of arbitrary PDEs, even in the absence of any paired input-output training data. We illustrate the effectiveness of the proposed framework in rapidly predicting the solution of various types of parametric PDEs up to three orders of magnitude faster compared to conventional PDE solvers, setting a previously unexplored paradigm for modeling and simulation of nonlinear and nonequilibrium processes in science and engineering. |
---|