Cargando…
Learning the solution operator of parametric partial differential equations with physics-informed DeepONets
Partial differential equations (PDEs) play a central role in the mathematical analysis and modeling of complex dynamic processes across all corners of science and engineering. Their solution often requires laborious analytical or computational tools, associated with a cost that is markedly amplified...
Autores principales: | Wang, Sifan, Wang, Hanwen, Perdikaris, Paris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480920/ https://www.ncbi.nlm.nih.gov/pubmed/34586842 http://dx.doi.org/10.1126/sciadv.abi8605 |
Ejemplares similares
-
Certified reduced basis methods for parametrized partial differential equations
por: Hesthaven, Jan S, et al.
Publicado: (2016) -
Numerical solutions of partial differential equations
por: Bertoluzza, Silvia, et al.
Publicado: (2009) -
Operational method of solution of linear non-integer ordinary and partial differential equations
por: Zhukovsky, K. V.
Publicado: (2016) -
Parallel solution of partial differential equations
por: Bjørstad, Petter, et al.
Publicado: (2000) -
Numerical solution of partial differential equations
por: Meis, Theodor, et al.
Publicado: (1981)