Cargando…

Clinical Wide-Field Retinal Image Deep Learning Classification of Exudative and Non-Exudative Age-Related Macular Degeneration

Background: Age-related macular degeneration (AMD) is a disease that currently affects approximately 196 million individuals and is projected to affect 288 million in 2040. As a result, better and earlier detection methods for this disease are needed in an effort to provide a higher quality of care....

Descripción completa

Detalles Bibliográficos
Autores principales: Tak, Nathaniel, Reddy, Akshay J, Martel, Juliette, Martel, James B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480936/
https://www.ncbi.nlm.nih.gov/pubmed/34646633
http://dx.doi.org/10.7759/cureus.17579
Descripción
Sumario:Background: Age-related macular degeneration (AMD) is a disease that currently affects approximately 196 million individuals and is projected to affect 288 million in 2040. As a result, better and earlier detection methods for this disease are needed in an effort to provide a higher quality of care. One way to achieve this is through the utilization of machine learning. A deep neural network, specifically a convoluted neural network (CNN) can be trained to differentiate between different types of AMD images given the proper training data. Methods: In this study, a CNN was trained on 420 Optos wide-field retinal images for 70 epochs in order to classify between exudative and non-exudative AMD. These images were obtained and labeled by ophthalmologists from the Martel Eye Clinic in Rancho Cordova, CA.  Results: After completing the study, a model was created with 88% accuracy. Both the training and validation loss started above 1 and ended below 0.2. Despite only analyzing a single image at a time, the model was still able to accurately identify if the individual had AMD in both eyes or one eye only. The model had the most trouble with bilateral non-exudative AMD. Overall the model was fairly accurate in the other categories. It was noted that the neural network was able to further differentiate from a single image if the disease is present in left, right, or both eyes. This is a point of contention for further investigation as it is impossible for the artificial intelligence (AI) to extrapolate the condition of both eyes from only one image. Conclusion: This research fostered the development of a CNN that was able to differentiate between exudative and non-exudative AMD. As well as determine if the disease is present in the right, left, or both eyes with a relatively high degree of accuracy. The model was trained on clinical data and can theoretically be used to classify other clinical images it has never encountered before.