Cargando…

The REDD1/TXNIP Complex Accelerates Oxidative Stress-Induced Apoptosis of Nucleus Pulposus Cells through the Mitochondrial Pathway

The death of nucleus pulposus (NP) cells is an important cause of intervertebral disc (IVD) degeneration. Redox disturbance caused by dysfunctional mitochondria has been considered as a vital risk for NP cell survival. It is valuable to identify key proteins maintaining mitochondrial function in NP...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Huipeng, Wang, Kun, Das, Abhirup, Li, Gaocai, Song, Yu, Luo, Rongjin, Cheung, Jason Pui Yin, Zhang, Teng, Li, Shuai, Yang, Cao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481043/
https://www.ncbi.nlm.nih.gov/pubmed/34603601
http://dx.doi.org/10.1155/2021/7397516
Descripción
Sumario:The death of nucleus pulposus (NP) cells is an important cause of intervertebral disc (IVD) degeneration. Redox disturbance caused by dysfunctional mitochondria has been considered as a vital risk for NP cell survival. It is valuable to identify key proteins maintaining mitochondrial function in NP cells. A previous study found that regulated in development and DNA damage response 1 (REDD1) are upregulated during intervertebral disc degeneration and that REDD1 can cause NP cell apoptosis. Thus, the present study further explores the effect of REDD1 on IVD degeneration. Our results showed that REDD1 promotes NP cell apoptosis via the mitochondrial pathway. Importantly, REDD1 formed a complex with TXNIP to strengthen its own action, and the combination was consolidated under H(2)O(2)-induced oxidative stress. The combined inhibition of the REDD1/TXNIP complex was better than that of REDD1 or TXNIP alone in restoring cell proliferation and accelerating apoptosis. Moreover, p53 acts as the transcription factor of REDD1 to regulate the REDD1/TXNIP complex under oxidative stress. Altogether, our results demonstrated that the REDD1/TXNIP complex mediated H(2)O(2)-induced human NP cell apoptosis and IVD degeneration through the mitochondrial pathway. Interferences on these sites to achieve mitochondrial redox homeostasis may be a novel therapeutic strategy for oxidative stress-associated IVD degeneration.