Cargando…

Structure-based classification predicts drug response in EGFR-mutant NSCLC

Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18–21 and are established driver mutations in non-small cell lung cancer (NSCLC)(1–3). Targeted therapies are approved for patients with ‘classical’ mutations and a small number of other mutations(4–6). However, effective the...

Descripción completa

Detalles Bibliográficos
Autores principales: Robichaux, Jacqulyne P., Le, Xiuning, Vijayan, R. S. K., Hicks, J. Kevin, Heeke, Simon, Elamin, Yasir Y., Lin, Heather Y., Udagawa, Hibiki, Skoulidis, Ferdinandos, Tran, Hai, Varghese, Susan, He, Junqin, Zhang, Fahao, Nilsson, Monique B., Hu, Lemei, Poteete, Alissa, Rinsurongkawong, Waree, Zhang, Xiaoshan, Ren, Chenghui, Liu, Xiaoke, Hong, Lingzhi, Zhang, Jianjun, Diao, Lixia, Madison, Russell, Schrock, Alexa B., Saam, Jennifer, Raymond, Victoria, Fang, Bingliang, Wang, Jing, Ha, Min Jin, Cross, Jason B., Gray, Jhanelle E., Heymach, John V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481125/
https://www.ncbi.nlm.nih.gov/pubmed/34526717
http://dx.doi.org/10.1038/s41586-021-03898-1
_version_ 1784576615399817216
author Robichaux, Jacqulyne P.
Le, Xiuning
Vijayan, R. S. K.
Hicks, J. Kevin
Heeke, Simon
Elamin, Yasir Y.
Lin, Heather Y.
Udagawa, Hibiki
Skoulidis, Ferdinandos
Tran, Hai
Varghese, Susan
He, Junqin
Zhang, Fahao
Nilsson, Monique B.
Hu, Lemei
Poteete, Alissa
Rinsurongkawong, Waree
Zhang, Xiaoshan
Ren, Chenghui
Liu, Xiaoke
Hong, Lingzhi
Zhang, Jianjun
Diao, Lixia
Madison, Russell
Schrock, Alexa B.
Saam, Jennifer
Raymond, Victoria
Fang, Bingliang
Wang, Jing
Ha, Min Jin
Cross, Jason B.
Gray, Jhanelle E.
Heymach, John V.
author_facet Robichaux, Jacqulyne P.
Le, Xiuning
Vijayan, R. S. K.
Hicks, J. Kevin
Heeke, Simon
Elamin, Yasir Y.
Lin, Heather Y.
Udagawa, Hibiki
Skoulidis, Ferdinandos
Tran, Hai
Varghese, Susan
He, Junqin
Zhang, Fahao
Nilsson, Monique B.
Hu, Lemei
Poteete, Alissa
Rinsurongkawong, Waree
Zhang, Xiaoshan
Ren, Chenghui
Liu, Xiaoke
Hong, Lingzhi
Zhang, Jianjun
Diao, Lixia
Madison, Russell
Schrock, Alexa B.
Saam, Jennifer
Raymond, Victoria
Fang, Bingliang
Wang, Jing
Ha, Min Jin
Cross, Jason B.
Gray, Jhanelle E.
Heymach, John V.
author_sort Robichaux, Jacqulyne P.
collection PubMed
description Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18–21 and are established driver mutations in non-small cell lung cancer (NSCLC)(1–3). Targeted therapies are approved for patients with ‘classical’ mutations and a small number of other mutations(4–6). However, effective therapies have not been identified for additional EGFR mutations. Furthermore, the frequency and effects of atypical EGFR mutations on drug sensitivity are unknown(1,3,7–10). Here we characterize the mutational landscape in 16,715 patients with EGFR-mutant NSCLC, and establish the structure–function relationship of EGFR mutations on drug sensitivity. We found that EGFR mutations can be separated into four distinct subgroups on the basis of sensitivity and structural changes that retrospectively predict patient outcomes following treatment with EGFR inhibitors better than traditional exon-based groups. Together, these data delineate a structure-based approach for defining functional groups of EGFR mutations that can effectively guide treatment and clinical trial choices for patients with EGFR-mutant NSCLC and suggest that a structure–function-based approach may improve the prediction of drug sensitivity to targeted therapies in oncogenes with diverse mutations.
format Online
Article
Text
id pubmed-8481125
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84811252021-10-08 Structure-based classification predicts drug response in EGFR-mutant NSCLC Robichaux, Jacqulyne P. Le, Xiuning Vijayan, R. S. K. Hicks, J. Kevin Heeke, Simon Elamin, Yasir Y. Lin, Heather Y. Udagawa, Hibiki Skoulidis, Ferdinandos Tran, Hai Varghese, Susan He, Junqin Zhang, Fahao Nilsson, Monique B. Hu, Lemei Poteete, Alissa Rinsurongkawong, Waree Zhang, Xiaoshan Ren, Chenghui Liu, Xiaoke Hong, Lingzhi Zhang, Jianjun Diao, Lixia Madison, Russell Schrock, Alexa B. Saam, Jennifer Raymond, Victoria Fang, Bingliang Wang, Jing Ha, Min Jin Cross, Jason B. Gray, Jhanelle E. Heymach, John V. Nature Article Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18–21 and are established driver mutations in non-small cell lung cancer (NSCLC)(1–3). Targeted therapies are approved for patients with ‘classical’ mutations and a small number of other mutations(4–6). However, effective therapies have not been identified for additional EGFR mutations. Furthermore, the frequency and effects of atypical EGFR mutations on drug sensitivity are unknown(1,3,7–10). Here we characterize the mutational landscape in 16,715 patients with EGFR-mutant NSCLC, and establish the structure–function relationship of EGFR mutations on drug sensitivity. We found that EGFR mutations can be separated into four distinct subgroups on the basis of sensitivity and structural changes that retrospectively predict patient outcomes following treatment with EGFR inhibitors better than traditional exon-based groups. Together, these data delineate a structure-based approach for defining functional groups of EGFR mutations that can effectively guide treatment and clinical trial choices for patients with EGFR-mutant NSCLC and suggest that a structure–function-based approach may improve the prediction of drug sensitivity to targeted therapies in oncogenes with diverse mutations. Nature Publishing Group UK 2021-09-15 2021 /pmc/articles/PMC8481125/ /pubmed/34526717 http://dx.doi.org/10.1038/s41586-021-03898-1 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Robichaux, Jacqulyne P.
Le, Xiuning
Vijayan, R. S. K.
Hicks, J. Kevin
Heeke, Simon
Elamin, Yasir Y.
Lin, Heather Y.
Udagawa, Hibiki
Skoulidis, Ferdinandos
Tran, Hai
Varghese, Susan
He, Junqin
Zhang, Fahao
Nilsson, Monique B.
Hu, Lemei
Poteete, Alissa
Rinsurongkawong, Waree
Zhang, Xiaoshan
Ren, Chenghui
Liu, Xiaoke
Hong, Lingzhi
Zhang, Jianjun
Diao, Lixia
Madison, Russell
Schrock, Alexa B.
Saam, Jennifer
Raymond, Victoria
Fang, Bingliang
Wang, Jing
Ha, Min Jin
Cross, Jason B.
Gray, Jhanelle E.
Heymach, John V.
Structure-based classification predicts drug response in EGFR-mutant NSCLC
title Structure-based classification predicts drug response in EGFR-mutant NSCLC
title_full Structure-based classification predicts drug response in EGFR-mutant NSCLC
title_fullStr Structure-based classification predicts drug response in EGFR-mutant NSCLC
title_full_unstemmed Structure-based classification predicts drug response in EGFR-mutant NSCLC
title_short Structure-based classification predicts drug response in EGFR-mutant NSCLC
title_sort structure-based classification predicts drug response in egfr-mutant nsclc
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481125/
https://www.ncbi.nlm.nih.gov/pubmed/34526717
http://dx.doi.org/10.1038/s41586-021-03898-1
work_keys_str_mv AT robichauxjacqulynep structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT lexiuning structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT vijayanrsk structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT hicksjkevin structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT heekesimon structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT elaminyasiry structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT linheathery structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT udagawahibiki structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT skoulidisferdinandos structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT tranhai structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT varghesesusan structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT hejunqin structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT zhangfahao structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT nilssonmoniqueb structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT hulemei structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT poteetealissa structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT rinsurongkawongwaree structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT zhangxiaoshan structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT renchenghui structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT liuxiaoke structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT honglingzhi structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT zhangjianjun structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT diaolixia structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT madisonrussell structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT schrockalexab structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT saamjennifer structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT raymondvictoria structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT fangbingliang structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT wangjing structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT haminjin structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT crossjasonb structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT grayjhanellee structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc
AT heymachjohnv structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc