Cargando…
Structure-based classification predicts drug response in EGFR-mutant NSCLC
Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18–21 and are established driver mutations in non-small cell lung cancer (NSCLC)(1–3). Targeted therapies are approved for patients with ‘classical’ mutations and a small number of other mutations(4–6). However, effective the...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481125/ https://www.ncbi.nlm.nih.gov/pubmed/34526717 http://dx.doi.org/10.1038/s41586-021-03898-1 |
_version_ | 1784576615399817216 |
---|---|
author | Robichaux, Jacqulyne P. Le, Xiuning Vijayan, R. S. K. Hicks, J. Kevin Heeke, Simon Elamin, Yasir Y. Lin, Heather Y. Udagawa, Hibiki Skoulidis, Ferdinandos Tran, Hai Varghese, Susan He, Junqin Zhang, Fahao Nilsson, Monique B. Hu, Lemei Poteete, Alissa Rinsurongkawong, Waree Zhang, Xiaoshan Ren, Chenghui Liu, Xiaoke Hong, Lingzhi Zhang, Jianjun Diao, Lixia Madison, Russell Schrock, Alexa B. Saam, Jennifer Raymond, Victoria Fang, Bingliang Wang, Jing Ha, Min Jin Cross, Jason B. Gray, Jhanelle E. Heymach, John V. |
author_facet | Robichaux, Jacqulyne P. Le, Xiuning Vijayan, R. S. K. Hicks, J. Kevin Heeke, Simon Elamin, Yasir Y. Lin, Heather Y. Udagawa, Hibiki Skoulidis, Ferdinandos Tran, Hai Varghese, Susan He, Junqin Zhang, Fahao Nilsson, Monique B. Hu, Lemei Poteete, Alissa Rinsurongkawong, Waree Zhang, Xiaoshan Ren, Chenghui Liu, Xiaoke Hong, Lingzhi Zhang, Jianjun Diao, Lixia Madison, Russell Schrock, Alexa B. Saam, Jennifer Raymond, Victoria Fang, Bingliang Wang, Jing Ha, Min Jin Cross, Jason B. Gray, Jhanelle E. Heymach, John V. |
author_sort | Robichaux, Jacqulyne P. |
collection | PubMed |
description | Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18–21 and are established driver mutations in non-small cell lung cancer (NSCLC)(1–3). Targeted therapies are approved for patients with ‘classical’ mutations and a small number of other mutations(4–6). However, effective therapies have not been identified for additional EGFR mutations. Furthermore, the frequency and effects of atypical EGFR mutations on drug sensitivity are unknown(1,3,7–10). Here we characterize the mutational landscape in 16,715 patients with EGFR-mutant NSCLC, and establish the structure–function relationship of EGFR mutations on drug sensitivity. We found that EGFR mutations can be separated into four distinct subgroups on the basis of sensitivity and structural changes that retrospectively predict patient outcomes following treatment with EGFR inhibitors better than traditional exon-based groups. Together, these data delineate a structure-based approach for defining functional groups of EGFR mutations that can effectively guide treatment and clinical trial choices for patients with EGFR-mutant NSCLC and suggest that a structure–function-based approach may improve the prediction of drug sensitivity to targeted therapies in oncogenes with diverse mutations. |
format | Online Article Text |
id | pubmed-8481125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-84811252021-10-08 Structure-based classification predicts drug response in EGFR-mutant NSCLC Robichaux, Jacqulyne P. Le, Xiuning Vijayan, R. S. K. Hicks, J. Kevin Heeke, Simon Elamin, Yasir Y. Lin, Heather Y. Udagawa, Hibiki Skoulidis, Ferdinandos Tran, Hai Varghese, Susan He, Junqin Zhang, Fahao Nilsson, Monique B. Hu, Lemei Poteete, Alissa Rinsurongkawong, Waree Zhang, Xiaoshan Ren, Chenghui Liu, Xiaoke Hong, Lingzhi Zhang, Jianjun Diao, Lixia Madison, Russell Schrock, Alexa B. Saam, Jennifer Raymond, Victoria Fang, Bingliang Wang, Jing Ha, Min Jin Cross, Jason B. Gray, Jhanelle E. Heymach, John V. Nature Article Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18–21 and are established driver mutations in non-small cell lung cancer (NSCLC)(1–3). Targeted therapies are approved for patients with ‘classical’ mutations and a small number of other mutations(4–6). However, effective therapies have not been identified for additional EGFR mutations. Furthermore, the frequency and effects of atypical EGFR mutations on drug sensitivity are unknown(1,3,7–10). Here we characterize the mutational landscape in 16,715 patients with EGFR-mutant NSCLC, and establish the structure–function relationship of EGFR mutations on drug sensitivity. We found that EGFR mutations can be separated into four distinct subgroups on the basis of sensitivity and structural changes that retrospectively predict patient outcomes following treatment with EGFR inhibitors better than traditional exon-based groups. Together, these data delineate a structure-based approach for defining functional groups of EGFR mutations that can effectively guide treatment and clinical trial choices for patients with EGFR-mutant NSCLC and suggest that a structure–function-based approach may improve the prediction of drug sensitivity to targeted therapies in oncogenes with diverse mutations. Nature Publishing Group UK 2021-09-15 2021 /pmc/articles/PMC8481125/ /pubmed/34526717 http://dx.doi.org/10.1038/s41586-021-03898-1 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Robichaux, Jacqulyne P. Le, Xiuning Vijayan, R. S. K. Hicks, J. Kevin Heeke, Simon Elamin, Yasir Y. Lin, Heather Y. Udagawa, Hibiki Skoulidis, Ferdinandos Tran, Hai Varghese, Susan He, Junqin Zhang, Fahao Nilsson, Monique B. Hu, Lemei Poteete, Alissa Rinsurongkawong, Waree Zhang, Xiaoshan Ren, Chenghui Liu, Xiaoke Hong, Lingzhi Zhang, Jianjun Diao, Lixia Madison, Russell Schrock, Alexa B. Saam, Jennifer Raymond, Victoria Fang, Bingliang Wang, Jing Ha, Min Jin Cross, Jason B. Gray, Jhanelle E. Heymach, John V. Structure-based classification predicts drug response in EGFR-mutant NSCLC |
title | Structure-based classification predicts drug response in EGFR-mutant NSCLC |
title_full | Structure-based classification predicts drug response in EGFR-mutant NSCLC |
title_fullStr | Structure-based classification predicts drug response in EGFR-mutant NSCLC |
title_full_unstemmed | Structure-based classification predicts drug response in EGFR-mutant NSCLC |
title_short | Structure-based classification predicts drug response in EGFR-mutant NSCLC |
title_sort | structure-based classification predicts drug response in egfr-mutant nsclc |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481125/ https://www.ncbi.nlm.nih.gov/pubmed/34526717 http://dx.doi.org/10.1038/s41586-021-03898-1 |
work_keys_str_mv | AT robichauxjacqulynep structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT lexiuning structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT vijayanrsk structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT hicksjkevin structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT heekesimon structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT elaminyasiry structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT linheathery structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT udagawahibiki structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT skoulidisferdinandos structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT tranhai structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT varghesesusan structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT hejunqin structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT zhangfahao structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT nilssonmoniqueb structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT hulemei structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT poteetealissa structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT rinsurongkawongwaree structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT zhangxiaoshan structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT renchenghui structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT liuxiaoke structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT honglingzhi structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT zhangjianjun structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT diaolixia structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT madisonrussell structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT schrockalexab structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT saamjennifer structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT raymondvictoria structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT fangbingliang structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT wangjing structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT haminjin structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT crossjasonb structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT grayjhanellee structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc AT heymachjohnv structurebasedclassificationpredictsdrugresponseinegfrmutantnsclc |