Cargando…
Extremely anisotropic van der Waals thermal conductors
The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials(1–3). Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insula...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481126/ https://www.ncbi.nlm.nih.gov/pubmed/34588671 http://dx.doi.org/10.1038/s41586-021-03867-8 |
_version_ | 1784576615634698240 |
---|---|
author | Kim, Shi En Mujid, Fauzia Rai, Akash Eriksson, Fredrik Suh, Joonki Poddar, Preeti Ray, Ariana Park, Chibeom Fransson, Erik Zhong, Yu Muller, David A. Erhart, Paul Cahill, David G. Park, Jiwoong |
author_facet | Kim, Shi En Mujid, Fauzia Rai, Akash Eriksson, Fredrik Suh, Joonki Poddar, Preeti Ray, Ariana Park, Chibeom Fransson, Erik Zhong, Yu Muller, David A. Erhart, Paul Cahill, David G. Park, Jiwoong |
author_sort | Kim, Shi En |
collection | PubMed |
description | The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials(1–3). Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis(4,5). However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS(2), one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS(2) (57 ± 3 mW m(−1) K(−1)) and WS(2) (41 ± 3 mW m(−1) K(−1)) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS(2) films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems. |
format | Online Article Text |
id | pubmed-8481126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-84811262021-10-08 Extremely anisotropic van der Waals thermal conductors Kim, Shi En Mujid, Fauzia Rai, Akash Eriksson, Fredrik Suh, Joonki Poddar, Preeti Ray, Ariana Park, Chibeom Fransson, Erik Zhong, Yu Muller, David A. Erhart, Paul Cahill, David G. Park, Jiwoong Nature Article The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials(1–3). Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis(4,5). However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS(2), one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS(2) (57 ± 3 mW m(−1) K(−1)) and WS(2) (41 ± 3 mW m(−1) K(−1)) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS(2) films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems. Nature Publishing Group UK 2021-09-29 2021 /pmc/articles/PMC8481126/ /pubmed/34588671 http://dx.doi.org/10.1038/s41586-021-03867-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kim, Shi En Mujid, Fauzia Rai, Akash Eriksson, Fredrik Suh, Joonki Poddar, Preeti Ray, Ariana Park, Chibeom Fransson, Erik Zhong, Yu Muller, David A. Erhart, Paul Cahill, David G. Park, Jiwoong Extremely anisotropic van der Waals thermal conductors |
title | Extremely anisotropic van der Waals thermal conductors |
title_full | Extremely anisotropic van der Waals thermal conductors |
title_fullStr | Extremely anisotropic van der Waals thermal conductors |
title_full_unstemmed | Extremely anisotropic van der Waals thermal conductors |
title_short | Extremely anisotropic van der Waals thermal conductors |
title_sort | extremely anisotropic van der waals thermal conductors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481126/ https://www.ncbi.nlm.nih.gov/pubmed/34588671 http://dx.doi.org/10.1038/s41586-021-03867-8 |
work_keys_str_mv | AT kimshien extremelyanisotropicvanderwaalsthermalconductors AT mujidfauzia extremelyanisotropicvanderwaalsthermalconductors AT raiakash extremelyanisotropicvanderwaalsthermalconductors AT erikssonfredrik extremelyanisotropicvanderwaalsthermalconductors AT suhjoonki extremelyanisotropicvanderwaalsthermalconductors AT poddarpreeti extremelyanisotropicvanderwaalsthermalconductors AT rayariana extremelyanisotropicvanderwaalsthermalconductors AT parkchibeom extremelyanisotropicvanderwaalsthermalconductors AT franssonerik extremelyanisotropicvanderwaalsthermalconductors AT zhongyu extremelyanisotropicvanderwaalsthermalconductors AT mullerdavida extremelyanisotropicvanderwaalsthermalconductors AT erhartpaul extremelyanisotropicvanderwaalsthermalconductors AT cahilldavidg extremelyanisotropicvanderwaalsthermalconductors AT parkjiwoong extremelyanisotropicvanderwaalsthermalconductors |