Cargando…

Porcine Acellular Dermal Matrix Increases Fat Survival Rate after Fat Grafting in Nude Mice

BACKGROUND: Autologous fat grafts have been widely in use for reconstruction, contour abnormalities, and cosmetic surgeries. However, the grafted fat one-year survival rate is unpredictable and always low (20%–80%). Standardizing the existing transplantation technology is difficult due to the limiti...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Meishu, Zhu, Meihui, Wu, Xiaoling, Xu, Meiquan, Fan, Kunwu, Wang, Jinming, Zhang, Liyong, Yin, Meifang, Wu, Jun, Zhu, Zhixiang, Yang, Guang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481189/
https://www.ncbi.nlm.nih.gov/pubmed/33959783
http://dx.doi.org/10.1007/s00266-021-02299-z
Descripción
Sumario:BACKGROUND: Autologous fat grafts have been widely in use for reconstruction, contour abnormalities, and cosmetic surgeries. However, the grafted fat one-year survival rate is unpredictable and always low (20%–80%). Standardizing the existing transplantation technology is difficult due to the limiting conditions. Scaffold materials or drugs are unsuitable to employ because of legal restrictions, complex production, and undetermined hazards. Therefore, a simpler and more effective approach to improve grafted fat survival rate is using commercial products as additives. Earlier studies proved that porcine acellular dermal matrix (PADM), a biomaterial clinically used for wound repair, could work as a scaffold for lipo-implantation. This study aimed at investigating the hitherto unclear effect of PADM on transplanted fat survival. METHODS: Thirty-two 8-week-old female nude mice were divided into two groups. Control mice received a 300 μl fat injection, while the PADM group mice were injected with a 300 μl PADM-fat mixture. After a 4-week treatment, fat weight and liquefaction ratio were assessed. Histological changes were quantified via hematoxylin & eosin (H&E) staining. Macrophage infiltration and vascular regeneration were revealed using an anti-CD34 antibody. Mouse and human mRNA expression levels were gauged via RNA-sequencing. On the third day post implantation, the mRNA expression levels of inflammatory genes Mcp-1 and Tnf-α were measured by qRT-PCR. RESULTS: The weight of surviving grafted fat did not differ between the control and the PADM group. However, adding PADM significantly decreased fat liquefaction. H&E-stained sections showed that PADM decreased fat necrosis, increased fat tissue regeneration, and raised CD34 levels in the regenerated tissue. RNA-sequencing showed that, compared to controls, fats from PADM-added group expressed more mouse-related mRNA but less human-related mRNA. The following GO and KEGG analysis showed that added PADM increased extracellular matrix (ECM) genes expression levels. The qRT-PCR showed that adding PADM increased Mcp-1 and Tnf-α mRNA expression levels. CONCLUSIONS: In summary, PADM addition increased fat survival rate by reducing fat liquefaction through an increased macrophage infiltration, ECM regeneration, and revascularization. Therefore, PADM addition is a workable application in autologous fat grafting. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.