Cargando…
Reconfigurable Stochastic neurons based on tin oxide/MoS(2) hetero-memristors for simulated annealing and the Boltzmann machine
Neuromorphic hardware implementation of Boltzmann Machine using a network of stochastic neurons can allow non-deterministic polynomial-time (NP) hard combinatorial optimization problems to be efficiently solved. Efficient implementation of such Boltzmann Machine with simulated annealing desires the...
Autores principales: | Yan, Xiaodong, Ma, Jiahui, Wu, Tong, Zhang, Aoyang, Wu, Jiangbin, Chin, Matthew, Zhang, Zhihan, Dubey, Madan, Wu, Wei, Chen, Mike Shuo-Wei, Guo, Jing, Wang, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481256/ https://www.ncbi.nlm.nih.gov/pubmed/34588444 http://dx.doi.org/10.1038/s41467-021-26012-5 |
Ejemplares similares
-
Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers
por: Liu, Jeremy, et al.
Publicado: (2020) -
MoS(2) memristor with photoresistive switching
por: Wang, Wei, et al.
Publicado: (2016) -
Corrigendum: MoS(2) memristor with photoresistive switching
por: Wang, Wei, et al.
Publicado: (2016) -
Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing
por: Aarts, Emile H L, et al.
Publicado: (1989) -
Comparative Analysis of Reconfigurable Platforms for Memristor Emulation
por: Mayacela, Margarita, et al.
Publicado: (2022)