Cargando…

Chemically driven energetic molecular ferroelectrics

Chemically driven thermal wave triggers high energy release rate in covalently-bonded molecular energetic materials. Molecular ferroelectrics bridge thermal wave and electrical energy by pyroelectric associated with heating frequency, thermal mass and heat transfer. Herein we design energetic molecu...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yong, Liu, Zhiyu, Wu, Chi-Chin, Gottfried, Jennifer L., Pesce-Rodriguez, Rose, Walck, Scott D., Chung, Peter W., Ren, Shenqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481480/
https://www.ncbi.nlm.nih.gov/pubmed/34588459
http://dx.doi.org/10.1038/s41467-021-26007-2
Descripción
Sumario:Chemically driven thermal wave triggers high energy release rate in covalently-bonded molecular energetic materials. Molecular ferroelectrics bridge thermal wave and electrical energy by pyroelectric associated with heating frequency, thermal mass and heat transfer. Herein we design energetic molecular ferroelectrics consisting of imidazolium cations (energetic ion) and perchlorate anions (oxidizer), and describe its thermal wave energy conversion with a specific power of 1.8 kW kg(−1). Such a molecular ferroelectric crystal shows an estimated detonation velocity of 7.20 ± 0.27 km s(−1) comparable to trinitrotoluene and hexanitrostilbene. A polarization-dependent heat transfer and specific power suggests the role of electron-phonon interaction in tuning energy density of energetic molecular ferroelectrics. These findings represent a class of molecular ferroelectric energetic compounds for emerging energy applications demanding high power density.