Cargando…

A guide for the use of fNIRS in microcephaly associated to congenital Zika virus infection

Congenital Zika Syndrome (CZS) is characterized by changes in cranial morphology associated with heterogeneous neurological manifestations and cognitive and behavioral impairments. In this syndrome, longitudinal neuroimaging could help clinicians to predict developmental trajectories of children and...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, João Ricardo, Junior, Claudinei Eduardo Biazoli, de Araújo, Elidianne Layanne Medeiros, de Souza Rodrigues, Júlia, Andrade, Suellen Marinho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481532/
https://www.ncbi.nlm.nih.gov/pubmed/34588470
http://dx.doi.org/10.1038/s41598-021-97450-w
Descripción
Sumario:Congenital Zika Syndrome (CZS) is characterized by changes in cranial morphology associated with heterogeneous neurological manifestations and cognitive and behavioral impairments. In this syndrome, longitudinal neuroimaging could help clinicians to predict developmental trajectories of children and tailor treatment plans accordingly. However, regularly acquiring magnetic resonance imaging (MRI) has several shortcomings besides cost, particularly those associated with childrens' clinical presentation as sensitivity to environmental stimuli. The indirect monitoring of local neural activity by non-invasive functional near-infrared spectroscopy (fNIRS) technique can be a useful alternative for longitudinally accessing the brain function in children with CZS. In order to provide a common framework for advancing longitudinal neuroimaging assessment, we propose a principled guideline for fNIRS acquisition and analyses in children with neurodevelopmental disorders. Based on our experience on collecting fNIRS data in children with CZS we emphasize the methodological challenges, such as clinical characteristics of the sample, desensitization, movement artifacts and environment control, as well as suggestions for tackling such challenges. Finally, metrics based on fNIRS can be associated with established clinical metrics, thereby opening possibilities for exploring this tool as a long-term predictor when assessing the effectiveness of treatments aimed at children with severe neurodevelopmental disorders.