Cargando…
Fast data-driven learning of parallel MRI sampling patterns for large scale problems
In this study, a fast data-driven optimization approach, named bias-accelerated subset selection (BASS), is proposed for learning efficacious sampling patterns (SPs) with the purpose of reducing scan time in large-dimensional parallel MRI. BASS is applicable when Cartesian fully-sampled k-space meas...
Autores principales: | Zibetti, Marcelo V. W., Herman, Gabor T., Regatte, Ravinder R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481566/ https://www.ncbi.nlm.nih.gov/pubmed/34588478 http://dx.doi.org/10.1038/s41598-021-97995-w |
Ejemplares similares
-
Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review
por: Singh, Dilbag, et al.
Publicado: (2023) -
Optimization of spin-lock times for T(1ρ) mapping of human knee cartilage with bi- and stretched-exponential models
por: de Moura, Hector L., et al.
Publicado: (2022) -
Rapid mono and biexponential 3D-T(1ρ) mapping of knee cartilage using variational networks
por: Zibetti, Marcelo V. W., et al.
Publicado: (2020) -
Quantifying muscle glycosaminoglycan levels in patients with post-stroke muscle stiffness using T(1ρ) MRI
por: Menon, Rajiv G., et al.
Publicado: (2019) -
Three-dimensional Saturation Transfer (31)P-MRI in Muscles of the Lower Leg at 3.0 T
por: Parasoglou, Prodromos, et al.
Publicado: (2014)