Cargando…
Graph Representation Forecasting of Patient's Medical Conditions: Toward a Digital Twin
Objective: Modern medicine needs to shift from a wait and react, curative discipline to a preventative, interdisciplinary science aiming at providing personalized, systemic, and precise treatment plans to patients. To this purpose, we propose a “digital twin” of patients modeling the human body as a...
Autores principales: | Barbiero, Pietro, Viñas Torné, Ramon, Lió, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481902/ https://www.ncbi.nlm.nih.gov/pubmed/34603366 http://dx.doi.org/10.3389/fgene.2021.652907 |
Ejemplares similares
-
Deep Learning Enables Fast and Accurate Imputation of Gene Expression
por: Viñas, Ramon, et al.
Publicado: (2021) -
Unsupervised generative and graph representation learning for modelling cell differentiation
por: Bica, Ioana, et al.
Publicado: (2020) -
Representation Learning: Recommendation With Knowledge Graph via Triple-Autoencoder
por: Geng, Yishuai, et al.
Publicado: (2022) -
Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases
por: Scherer, Paul, et al.
Publicado: (2021) -
MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning
por: Zhao, Bo-Wei, et al.
Publicado: (2021)