Cargando…
Machine Learning Applications in Solid Organ Transplantation and Related Complications
The complexity of transplant medicine pushes the boundaries of innate, human reasoning. From networks of immune modulators to dynamic pharmacokinetics to variable postoperative graft survival to equitable allocation of scarce organs, machine learning promises to inform clinical decision making by de...
Autores principales: | Balch, Jeremy A., Delitto, Daniel, Tighe, Patrick J., Zarrinpar, Ali, Efron, Philip A., Rashidi, Parisa, Upchurch, Gilbert R., Bihorac, Azra, Loftus, Tyler J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481939/ https://www.ncbi.nlm.nih.gov/pubmed/34603324 http://dx.doi.org/10.3389/fimmu.2021.739728 |
Ejemplares similares
-
Building an automated, machine learning-enabled platform for predicting post-operative complications
por: Balch, Jeremy A, et al.
Publicado: (2023) -
Mysteries, Epistemological Modesty, and Artificial Intelligence in Surgery
por: Loftus, Tyler J., et al.
Publicado: (2020) -
Gamification for Machine Learning in Surgical Patient Engagement
por: Balch, Jeremy A., et al.
Publicado: (2022) -
Association of Postoperative Undertriage to Hospital Wards With Mortality and Morbidity
por: Loftus, Tyler J., et al.
Publicado: (2021) -
Uncertainty-aware deep learning in healthcare: A scoping review
por: Loftus, Tyler J., et al.
Publicado: (2022)