Cargando…
Detection of Incidental Esophageal Cancers on Chest CT by Deep Learning
OBJECTIVE: To develop a deep learning-based model using esophageal thickness to detect esophageal cancer from unenhanced chest CT images. METHODS: We retrospectively identified 141 patients with esophageal cancer and 273 patients negative for esophageal cancer (at the time of imaging) for model trai...
Autores principales: | Sui, He, Ma, Ruhang, Liu, Lin, Gao, Yaozong, Zhang, Wenhai, Mo, Zhanhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481957/ https://www.ncbi.nlm.nih.gov/pubmed/34604036 http://dx.doi.org/10.3389/fonc.2021.700210 |
Ejemplares similares
-
Hypergraph learning for identification of COVID-19 with CT imaging
por: Di, Donglin, et al.
Publicado: (2021) -
Development of a Deep Learning System to Detect Esophageal Cancer by Barium Esophagram
por: Zhang, Peipei, et al.
Publicado: (2022) -
Automatic Sequence-Based Network for Lung Diseases Detection in Chest CT
por: Hao, Jinkui, et al.
Publicado: (2021) -
Incidental esophageal submucosal tumor detection by chest radiography: A case report
por: TADANO, SOSUKE, et al.
Publicado: (2014) -
Unsuspected pheochromocytoma incidentally found on chest CT
por: Bennett, Bradford, et al.
Publicado: (2017)