Cargando…
Ambulatory monitoring promises equitable personalized healthcare delivery in underrepresented patients
The pandemic has brought to everybody’s attention the apparent need of remote monitoring, highlighting hitherto unseen challenges in healthcare. Today, mobile monitoring and real-time data collection, processing and decision-making, can drastically improve the cardiorespiratory–haemodynamic health d...
Autores principales: | Kulkarni, Kanchan, Sevakula, Rahul Kumar, Kassab, Mohamad B, Nichols, John, Roberts, Jesse D., Isselbacher, Eric M, Armoundas, Antonis A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482046/ https://www.ncbi.nlm.nih.gov/pubmed/34604759 http://dx.doi.org/10.1093/ehjdh/ztab047 |
Ejemplares similares
-
Real-time machine learning-based intensive care unit alarm classification without prior knowledge of the underlying rhythm
por: Au-Yeung, Wan-Tai M, et al.
Publicado: (2021) -
Real‐Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
por: Bollepalli, Sandeep Chandra, et al.
Publicado: (2021) -
RespiCo: A novel, flexible, and stand-alone electronic respiratory coaching device
por: Kulkarni, Kanchan, et al.
Publicado: (2022) -
State‐of‐the‐Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System
por: Sevakula, Rahul Kumar, et al.
Publicado: (2020) -
Utility of a smartphone based system (cvrphone) to accurately determine apneic events from electrocardiographic signals
por: Sohn, Kwanghyun, et al.
Publicado: (2019)