Cargando…
Deep learning analysis of resting electrocardiograms for the detection of myocardial dysfunction, hypertrophy, and ischaemia: a systematic review
The aim of this review was to assess the evidence for deep learning (DL) analysis of resting electrocardiograms (ECGs) to predict structural cardiac pathologies such as left ventricular (LV) systolic dysfunction, myocardial hypertrophy, and ischaemic heart disease. A systematic literature search was...
Autores principales: | Al Hinai, Ghalib, Jammoul, Samer, Vajihi, Zara, Afilalo, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482047/ https://www.ncbi.nlm.nih.gov/pubmed/34604757 http://dx.doi.org/10.1093/ehjdh/ztab048 |
Ejemplares similares
-
Deep learning assessment of left ventricular hypertrophy based on electrocardiogram
por: Zhao, Xiaoli, et al.
Publicado: (2022) -
Deep learning on resting electrocardiogram to identify impaired heart rate recovery
por: Diamant, Nathaniel, et al.
Publicado: (2022) -
Clinical validation of a 13-lead electrocardiogram derived from a self-applicable 3-lead recording for diagnosis of myocardial supply ischaemia and common non-ischaemic electrocardiogram abnormalities at rest
por: Van Heuverswyn, Frederic, et al.
Publicado: (2022) -
Acute Myocardial Infarction Detection Using Deep Learning-Enabled Electrocardiograms
por: Chen, Xiehui, et al.
Publicado: (2021) -
Corrigendum: Acute Myocardial Infarction Detection Using Deep Learning-Enabled Electrocardiograms
por: Chen, Xiehui, et al.
Publicado: (2021)