Cargando…
Real-time machine learning-based intensive care unit alarm classification without prior knowledge of the underlying rhythm
AIMS: This work attempts to develop a standalone heart rhythm alerting system for the intensive care unit (ICU), where life-threatening arrhythmias have to be identified/alerted more precisely and more instantaneously (i.e. with lower latency) than existing bedside monitors. METHODS AND RESULTS: We...
Autores principales: | Au-Yeung, Wan-Tai M, Sevakula, Rahul K, Sahani, Ashish K, Kassab, Mohamad, Boyer, Richard, Isselbacher, Eric M, Armoundas, Antonis A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482048/ https://www.ncbi.nlm.nih.gov/pubmed/34604758 http://dx.doi.org/10.1093/ehjdh/ztab058 |
Ejemplares similares
-
Reduction of false alarms in the intensive care unit using an optimized machine learning based approach
por: Au-Yeung, Wan-Tai M., et al.
Publicado: (2019) -
Real‐Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
por: Bollepalli, Sandeep Chandra, et al.
Publicado: (2021) -
State‐of‐the‐Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System
por: Sevakula, Rahul Kumar, et al.
Publicado: (2020) -
Ambulatory monitoring promises equitable personalized healthcare delivery in underrepresented patients
por: Kulkarni, Kanchan, et al.
Publicado: (2021) -
A Novel Point-of-Care Smartphone Based System for Monitoring the Cardiac and Respiratory Systems
por: Sohn, Kwanghyun, et al.
Publicado: (2017)