Cargando…
Improved Gel Properties of Whey Protein-Stabilized Emulsions by Ultrasound and Enzymatic Cross-Linking
This study investigated the effects of high-intensity ultrasound (HUS) and transglutaminase pretreatment on the gelation behavior of whey protein soluble aggregate (WPISA) emulsions. HUS pretreatment and TGase-mediated cross-linking delayed the onset of gelation but significantly increased (p < 0...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482177/ https://www.ncbi.nlm.nih.gov/pubmed/34563021 http://dx.doi.org/10.3390/gels7030135 |
Sumario: | This study investigated the effects of high-intensity ultrasound (HUS) and transglutaminase pretreatment on the gelation behavior of whey protein soluble aggregate (WPISA) emulsions. HUS pretreatment and TGase-mediated cross-linking delayed the onset of gelation but significantly increased (p < 0.05) the gel firmness (G′) both after gel formation at 25 °C and during storage at 4 °C. The frequency sweep test indicated that all gels had a similar frequency dependence at 4 and 25 °C, and the elasticity and viscosity of the WPISA-stabilized emulsion gel were significantly enhanced by HUS pretreatment and TGase-mediated cross-linking (p < 0.05). HUS and TGase-mediated cross-linking greatly improved the textural properties of WPISA-stabilized emulsion gels, as revealed by their increases in gel hardness, cohesiveness, resilience, and chewiness. HUS pretreatment and TGase-mediated cross-linking significantly increased the water-holding capacity but decreased the swelling ratios of the gels (p < 0.05). Interactive force analysis confirmed that noncovalent interactions, disulfide bonds, and TGase-induced covalent cross-links were all involved in the formation of gel networks. In conclusion, the combination of HUS and TGase-mediated cross-linking were beneficial for improving the gelation properties of WPISA-stabilized emulsion as a controlled release vehicle for potential food industrial applications. |
---|