Cargando…
Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly((L)-lysine)-Based Amphiphilic Copolypeptides
In this research, we studied the effect of polypeptide composition and topology on the hydrogelation of star-shaped block copolypeptides based on hydrophilic, coil poly((L)-lysine)(20) (s-PLL(20)) tethered with a hydrophobic, sheet-like polypeptide segment, which is poly((L)-phenylalanine) (PPhe), p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482192/ https://www.ncbi.nlm.nih.gov/pubmed/34563017 http://dx.doi.org/10.3390/gels7030131 |
_version_ | 1784576848810737664 |
---|---|
author | Phan, Thi Ha My Huang, Ching-Chia Tsai, Yi-Jen Hu, Jin-Jia Jan, Jeng-Shiung |
author_facet | Phan, Thi Ha My Huang, Ching-Chia Tsai, Yi-Jen Hu, Jin-Jia Jan, Jeng-Shiung |
author_sort | Phan, Thi Ha My |
collection | PubMed |
description | In this research, we studied the effect of polypeptide composition and topology on the hydrogelation of star-shaped block copolypeptides based on hydrophilic, coil poly((L)-lysine)(20) (s-PLL(20)) tethered with a hydrophobic, sheet-like polypeptide segment, which is poly((L)-phenylalanine) (PPhe), poly((L)-leucine) (PLeu), poly((L)-valine) (PVal) or poly((L)-alanine) (PAla) with a degree of polymerization (DP) about 5. We found that the PPhe, PLeu, and PVal segments are good hydrogelators to promote hydrogelation. The hydrogelation and hydrogel mechanical properties depend on the arm number and hydrophobic polypeptide segment, which are dictated by the amphiphilic balance between polypeptide blocks and the hydrophobic interactions/hydrogen bonding exerted by the hydrophobic polypeptide segment. The star-shaped topology could facilitate their hydrogelation due to the branching chains serving as multiple interacting depots between hydrophobic polypeptide segments. The 6-armed diblock copolypeptides have better hydrogelation ability than 3-armed ones and s-PLL-b-PPhe exhibits better hydrogelation ability than s-PLL-b-PVal and s-PLL-b-PLeu due to the additional cation–π and π–π interactions. This study highlights that polypeptide composition and topology could be additional parameters to manipulate polypeptide hydrogelation. |
format | Online Article Text |
id | pubmed-8482192 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84821922021-10-01 Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly((L)-lysine)-Based Amphiphilic Copolypeptides Phan, Thi Ha My Huang, Ching-Chia Tsai, Yi-Jen Hu, Jin-Jia Jan, Jeng-Shiung Gels Article In this research, we studied the effect of polypeptide composition and topology on the hydrogelation of star-shaped block copolypeptides based on hydrophilic, coil poly((L)-lysine)(20) (s-PLL(20)) tethered with a hydrophobic, sheet-like polypeptide segment, which is poly((L)-phenylalanine) (PPhe), poly((L)-leucine) (PLeu), poly((L)-valine) (PVal) or poly((L)-alanine) (PAla) with a degree of polymerization (DP) about 5. We found that the PPhe, PLeu, and PVal segments are good hydrogelators to promote hydrogelation. The hydrogelation and hydrogel mechanical properties depend on the arm number and hydrophobic polypeptide segment, which are dictated by the amphiphilic balance between polypeptide blocks and the hydrophobic interactions/hydrogen bonding exerted by the hydrophobic polypeptide segment. The star-shaped topology could facilitate their hydrogelation due to the branching chains serving as multiple interacting depots between hydrophobic polypeptide segments. The 6-armed diblock copolypeptides have better hydrogelation ability than 3-armed ones and s-PLL-b-PPhe exhibits better hydrogelation ability than s-PLL-b-PVal and s-PLL-b-PLeu due to the additional cation–π and π–π interactions. This study highlights that polypeptide composition and topology could be additional parameters to manipulate polypeptide hydrogelation. MDPI 2021-08-30 /pmc/articles/PMC8482192/ /pubmed/34563017 http://dx.doi.org/10.3390/gels7030131 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Phan, Thi Ha My Huang, Ching-Chia Tsai, Yi-Jen Hu, Jin-Jia Jan, Jeng-Shiung Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly((L)-lysine)-Based Amphiphilic Copolypeptides |
title | Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly((L)-lysine)-Based Amphiphilic Copolypeptides |
title_full | Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly((L)-lysine)-Based Amphiphilic Copolypeptides |
title_fullStr | Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly((L)-lysine)-Based Amphiphilic Copolypeptides |
title_full_unstemmed | Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly((L)-lysine)-Based Amphiphilic Copolypeptides |
title_short | Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly((L)-lysine)-Based Amphiphilic Copolypeptides |
title_sort | polypeptide composition and topology affect hydrogelation of star-shaped poly((l)-lysine)-based amphiphilic copolypeptides |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482192/ https://www.ncbi.nlm.nih.gov/pubmed/34563017 http://dx.doi.org/10.3390/gels7030131 |
work_keys_str_mv | AT phanthihamy polypeptidecompositionandtopologyaffecthydrogelationofstarshapedpolyllysinebasedamphiphiliccopolypeptides AT huangchingchia polypeptidecompositionandtopologyaffecthydrogelationofstarshapedpolyllysinebasedamphiphiliccopolypeptides AT tsaiyijen polypeptidecompositionandtopologyaffecthydrogelationofstarshapedpolyllysinebasedamphiphiliccopolypeptides AT hujinjia polypeptidecompositionandtopologyaffecthydrogelationofstarshapedpolyllysinebasedamphiphiliccopolypeptides AT janjengshiung polypeptidecompositionandtopologyaffecthydrogelationofstarshapedpolyllysinebasedamphiphiliccopolypeptides |