Cargando…

Rhodiola rosea Rhizome Extract-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Potential Antioxidant and Catalytic Reduction Activities

[Image: see text] The silver nanoparticles (AgNPs) using the rhizome extract of Rhodiola rosea have been reported. However, their antioxidant activity and whether the biogenic AgNPs could be used to catalyze the reduction of hazardous dye or used as fluorescence enhancers are unknown. This study foc...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Daihua, Yang, Xu, Chen, Wang, Feng, Zili, Hu, Chingyuan, Yan, Fei, Chen, Xiaohua, Qu, Dong, Chen, Zhiyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482401/
https://www.ncbi.nlm.nih.gov/pubmed/34604627
http://dx.doi.org/10.1021/acsomega.1c02843
Descripción
Sumario:[Image: see text] The silver nanoparticles (AgNPs) using the rhizome extract of Rhodiola rosea have been reported. However, their antioxidant activity and whether the biogenic AgNPs could be used to catalyze the reduction of hazardous dye or used as fluorescence enhancers are unknown. This study focused on the facile green synthesis of silver nanoparticles using the rhizome aqueous extract of R. rosea (G-AgNPs). We then studied their antioxidant activity and catalytic degradation of hazardous dye Direct Orange 26 (DO26) and Direct Blue 15 (DB15). Their effects on fluorescein’s fluorescent properties were also evaluated. The chemical AgNPs (C-AgNPs) were synthesized by reducing solid sodium borohydride (NaBH(4)), and its above activities were compared with those of G-AgNPs. The formation of G-AgNPs was confirmed by the appearance of brownish-gray color and the surface plasmon resonance (SPR) peak at 437 nm. The biogenic AgNPs were approximately 10 nm in size with a regular spherical shape identified from transmission electron microscopy (TEM) analysis. G-AgNPs exhibited significantly improved 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity than butylated hydroxytoluene (BHT) and C-AgNPs (p < 0.05). The biogenic G-AgNPs were also found to function as an effective green catalyst in reducing DO26 and DB15 by NaBH(4), which is superior to C-AgNPs. Furthermore, G-AgNPs showed better fluorescence enhancement activity than C-AgNPs, and the concentration required was lower. When the concentration of the G-AgNP solution was 64 nmol/L, the fluorescence intensity reached the maximum of 5460, with the fluorescence enhancement efficiency of 3.39, and the fluorescence activity was stable within 48 h. This study shows the efficacy of biogenic AgNPs in catalyzing the reduction of hazardous dye DO26 and DB15. Biogenic AgNPs could also be used as fluorescence enhancers in low concentrations.