Cargando…
A novel deep interval type-2 fuzzy LSTM (DIT2FLSTM) model applied to COVID-19 pandemic time-series prediction
Currently, the novel COVID-19 coronavirus has been widely spread as a global pandemic. The COVID-19 pandemic has a major influence on human life, healthcare systems, and the economy. There are a large number of methods available for predicting the incidence of the virus. A complex and non-stationary...
Autores principales: | Safari, Aref, Hosseini, Rahil, Mazinani, Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482548/ https://www.ncbi.nlm.nih.gov/pubmed/34601140 http://dx.doi.org/10.1016/j.jbi.2021.103920 |
Ejemplares similares
-
On Dit
Publicado: (1876) -
Lieux dits /
por: Tournier, Michel
Publicado: (2002) -
Autrement dit / Marie Cardinal
por: Cardinal, Marie
Publicado: (1977) -
Fuzzy inference-based LSTM for long-term time series prediction
por: Wang, Weina, et al.
Publicado: (2023) -
Vous avez dit leadership
por: Boucher Pierre, et al.
Publicado: (2007)