Cargando…
Down-expression of TaPIN1s Increases the Tiller Number and Grain Yield in Wheat
BACKGROUND: Tiller number is a factor determining panicle number and grain yield in wheat (Triticum aestivum). Auxin plays an important role in the regulation of branch production. PIN-FORMED 1 (PIN1), an auxin efflux carrier, plays a role in the regulation of tiller number in rice (Oryza sativa); h...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482684/ https://www.ncbi.nlm.nih.gov/pubmed/34592922 http://dx.doi.org/10.1186/s12870-021-03217-w |
Sumario: | BACKGROUND: Tiller number is a factor determining panicle number and grain yield in wheat (Triticum aestivum). Auxin plays an important role in the regulation of branch production. PIN-FORMED 1 (PIN1), an auxin efflux carrier, plays a role in the regulation of tiller number in rice (Oryza sativa); however, little is known on the roles of PIN1 in wheat. RESULTS: Nine homologs of TaPIN1 genes were identified in wheat, of which TaPIN1-6 genes showed higher expression in the stem apex and young leaf in wheat, and the TaPIN1-6a protein was localized in the plasma membrane. The down-expression of TaPIN1s increased the tiller number in TaPIN1-RNA interference (TaPIN1-RNAi) transgenic wheat plants, indicating that auxin might mediate the axillary bud production. By contrast, the spikelet number, grain number per panicle, and the 1000-grain weight were decreased in the TaPIN1-RNAi transgenic wheat plants compared with those in the wild type. In summary, a reduction of TaPIN1s expression increased the tiller number and grain yield per plant of wheat. CONCLUSIONS: Phylogenetic analysis and protein structure of nine TaPIN1 proteins were analyzed, and subcellular localization of TaPIN1-6a was located in the plasma membrane. Knock-down expression of TaPIN1 genes increased the tiller number of transgenic wheat lines. Our study suggests that TaPIN1s is required for the regulation of grain yield in wheat. |
---|