Cargando…
Strategies for the Site-Specific Decoration of DNA Origami Nanostructures with Functionally Intact Proteins
[Image: see text] DNA origami structures provide flexible scaffolds for the organization of single biomolecules with nanometer precision. While they find increasing use for a variety of biological applications, the functionalization with proteins at defined stoichiometry, high yield, and under prese...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482763/ https://www.ncbi.nlm.nih.gov/pubmed/34463486 http://dx.doi.org/10.1021/acsnano.1c05411 |
_version_ | 1784576978439897088 |
---|---|
author | Hellmeier, Joschka Platzer, René Mühlgrabner, Vanessa Schneider, Magdalena C. Kurz, Elke Schütz, Gerhard J. Huppa, Johannes B. Sevcsik, Eva |
author_facet | Hellmeier, Joschka Platzer, René Mühlgrabner, Vanessa Schneider, Magdalena C. Kurz, Elke Schütz, Gerhard J. Huppa, Johannes B. Sevcsik, Eva |
author_sort | Hellmeier, Joschka |
collection | PubMed |
description | [Image: see text] DNA origami structures provide flexible scaffolds for the organization of single biomolecules with nanometer precision. While they find increasing use for a variety of biological applications, the functionalization with proteins at defined stoichiometry, high yield, and under preservation of protein function remains challenging. In this study, we applied single molecule fluorescence microscopy in combination with a cell biological functional assay to systematically evaluate different strategies for the site-specific decoration of DNA origami structures, focusing on efficiency, stoichiometry, and protein functionality. Using an activating ligand of the T-cell receptor (TCR) as the protein of interest, we found that two commonly used methodologies underperformed with regard to stoichiometry and protein functionality. While strategies employing tetravalent wildtype streptavidin for coupling of a biotinylated TCR-ligand yielded mixed populations of DNA origami structures featuring up to three proteins, the use of divalent (dSAv) or DNA-conjugated monovalent streptavidin (mSAv) allowed for site-specific attachment of a single biotinylated TCR-ligand. The most straightforward decoration strategy, via covalent DNA conjugation, resulted in a 3-fold decrease in ligand potency, likely due to charge-mediated impairment of protein function. Replacing DNA with charge-neutral peptide nucleic acid (PNA) in a ligand conjugate emerged as the coupling strategy with the best overall performance in our study, as it produced the highest yield with no multivalent DNA origami structures and fully retained protein functionality. With our study we aim to provide guidelines for the stoichiometrically defined, site-specific functionalization of DNA origami structures with proteins of choice serving a wide range of biological applications. |
format | Online Article Text |
id | pubmed-8482763 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-84827632021-10-01 Strategies for the Site-Specific Decoration of DNA Origami Nanostructures with Functionally Intact Proteins Hellmeier, Joschka Platzer, René Mühlgrabner, Vanessa Schneider, Magdalena C. Kurz, Elke Schütz, Gerhard J. Huppa, Johannes B. Sevcsik, Eva ACS Nano [Image: see text] DNA origami structures provide flexible scaffolds for the organization of single biomolecules with nanometer precision. While they find increasing use for a variety of biological applications, the functionalization with proteins at defined stoichiometry, high yield, and under preservation of protein function remains challenging. In this study, we applied single molecule fluorescence microscopy in combination with a cell biological functional assay to systematically evaluate different strategies for the site-specific decoration of DNA origami structures, focusing on efficiency, stoichiometry, and protein functionality. Using an activating ligand of the T-cell receptor (TCR) as the protein of interest, we found that two commonly used methodologies underperformed with regard to stoichiometry and protein functionality. While strategies employing tetravalent wildtype streptavidin for coupling of a biotinylated TCR-ligand yielded mixed populations of DNA origami structures featuring up to three proteins, the use of divalent (dSAv) or DNA-conjugated monovalent streptavidin (mSAv) allowed for site-specific attachment of a single biotinylated TCR-ligand. The most straightforward decoration strategy, via covalent DNA conjugation, resulted in a 3-fold decrease in ligand potency, likely due to charge-mediated impairment of protein function. Replacing DNA with charge-neutral peptide nucleic acid (PNA) in a ligand conjugate emerged as the coupling strategy with the best overall performance in our study, as it produced the highest yield with no multivalent DNA origami structures and fully retained protein functionality. With our study we aim to provide guidelines for the stoichiometrically defined, site-specific functionalization of DNA origami structures with proteins of choice serving a wide range of biological applications. American Chemical Society 2021-08-31 2021-09-28 /pmc/articles/PMC8482763/ /pubmed/34463486 http://dx.doi.org/10.1021/acsnano.1c05411 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Hellmeier, Joschka Platzer, René Mühlgrabner, Vanessa Schneider, Magdalena C. Kurz, Elke Schütz, Gerhard J. Huppa, Johannes B. Sevcsik, Eva Strategies for the Site-Specific Decoration of DNA Origami Nanostructures with Functionally Intact Proteins |
title | Strategies
for the Site-Specific Decoration of DNA
Origami Nanostructures with Functionally Intact Proteins |
title_full | Strategies
for the Site-Specific Decoration of DNA
Origami Nanostructures with Functionally Intact Proteins |
title_fullStr | Strategies
for the Site-Specific Decoration of DNA
Origami Nanostructures with Functionally Intact Proteins |
title_full_unstemmed | Strategies
for the Site-Specific Decoration of DNA
Origami Nanostructures with Functionally Intact Proteins |
title_short | Strategies
for the Site-Specific Decoration of DNA
Origami Nanostructures with Functionally Intact Proteins |
title_sort | strategies
for the site-specific decoration of dna
origami nanostructures with functionally intact proteins |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482763/ https://www.ncbi.nlm.nih.gov/pubmed/34463486 http://dx.doi.org/10.1021/acsnano.1c05411 |
work_keys_str_mv | AT hellmeierjoschka strategiesforthesitespecificdecorationofdnaorigaminanostructureswithfunctionallyintactproteins AT platzerrene strategiesforthesitespecificdecorationofdnaorigaminanostructureswithfunctionallyintactproteins AT muhlgrabnervanessa strategiesforthesitespecificdecorationofdnaorigaminanostructureswithfunctionallyintactproteins AT schneidermagdalenac strategiesforthesitespecificdecorationofdnaorigaminanostructureswithfunctionallyintactproteins AT kurzelke strategiesforthesitespecificdecorationofdnaorigaminanostructureswithfunctionallyintactproteins AT schutzgerhardj strategiesforthesitespecificdecorationofdnaorigaminanostructureswithfunctionallyintactproteins AT huppajohannesb strategiesforthesitespecificdecorationofdnaorigaminanostructureswithfunctionallyintactproteins AT sevcsikeva strategiesforthesitespecificdecorationofdnaorigaminanostructureswithfunctionallyintactproteins |