Cargando…

Laboratory evaluation of twelve portable devices for medicine quality screening

BACKGROUND: Post-market surveillance is a key regulatory function to prevent substandard and falsified (SF) medicines from being consumed by patients. Field deployable technologies offer the potential for rapid objective screening for SF medicines. METHODS AND FINDINGS: We evaluated twelve devices:...

Descripción completa

Detalles Bibliográficos
Autores principales: Zambrzycki, Stephen C., Caillet, Celine, Vickers, Serena, Bouza, Marcos, Donndelinger, David V., Geben, Laura C., Bernier, Matthew C., Newton, Paul N., Fernández, Facundo M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483346/
https://www.ncbi.nlm.nih.gov/pubmed/34591844
http://dx.doi.org/10.1371/journal.pntd.0009360
_version_ 1784577102967734272
author Zambrzycki, Stephen C.
Caillet, Celine
Vickers, Serena
Bouza, Marcos
Donndelinger, David V.
Geben, Laura C.
Bernier, Matthew C.
Newton, Paul N.
Fernández, Facundo M.
author_facet Zambrzycki, Stephen C.
Caillet, Celine
Vickers, Serena
Bouza, Marcos
Donndelinger, David V.
Geben, Laura C.
Bernier, Matthew C.
Newton, Paul N.
Fernández, Facundo M.
author_sort Zambrzycki, Stephen C.
collection PubMed
description BACKGROUND: Post-market surveillance is a key regulatory function to prevent substandard and falsified (SF) medicines from being consumed by patients. Field deployable technologies offer the potential for rapid objective screening for SF medicines. METHODS AND FINDINGS: We evaluated twelve devices: three near infrared spectrometers (MicroPHAZIR RX, NIR-S-G1, Neospectra 2.5), two Raman spectrometers (Progeny, TruScan RM), one mid-infrared spectrometer (4500a), one disposable colorimetric assay (Paper Analytical Devices, PAD), one disposable immunoassay (Rapid Diagnostic Test, RDT), one portable liquid chromatograph (C-Vue), one microfluidic system (PharmaChk), one mass spectrometer (QDa), and one thin layer chromatography kit (GPHF-Minilab). Each device was tested with a series of field collected medicines (FCM) along with simulated medicines (SIM) formulated in a laboratory. The FCM and SIM ranged from samples with good quality active pharmaceutical ingredient (API) concentrations, reduced concentrations of API (80% and 50% of the API), no API, and the wrong API. All the devices had high sensitivities (91.5 to 100.0%) detecting medicines with no API or the wrong API. However, the sensitivities of each device towards samples with 50% and 80% API varied greatly, from 0% to 100%. The infrared and Raman spectrometers had variable sensitivities for detecting samples with 50% and 80% API (from 5.6% to 50.0%). The devices with the ability to quantitate API (C-Vue, PharmaChk, QDa) had sensitivities ranging from 91.7% to 100% to detect all poor quality samples. The specificity was lower for the quantitative C-Vue, PharmaChk, & QDa (50.0% to 91.7%) than for all the other devices in this study (95.5% to 100%). CONCLUSIONS: The twelve devices evaluated could detect medicines with the wrong or none of the APIs, consistent with falsified medicines, with high accuracy. However, API quantitation to detect formulations similar to those commonly found in substandards proved more difficult, requiring further technological innovation.
format Online
Article
Text
id pubmed-8483346
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-84833462021-10-01 Laboratory evaluation of twelve portable devices for medicine quality screening Zambrzycki, Stephen C. Caillet, Celine Vickers, Serena Bouza, Marcos Donndelinger, David V. Geben, Laura C. Bernier, Matthew C. Newton, Paul N. Fernández, Facundo M. PLoS Negl Trop Dis Research Article BACKGROUND: Post-market surveillance is a key regulatory function to prevent substandard and falsified (SF) medicines from being consumed by patients. Field deployable technologies offer the potential for rapid objective screening for SF medicines. METHODS AND FINDINGS: We evaluated twelve devices: three near infrared spectrometers (MicroPHAZIR RX, NIR-S-G1, Neospectra 2.5), two Raman spectrometers (Progeny, TruScan RM), one mid-infrared spectrometer (4500a), one disposable colorimetric assay (Paper Analytical Devices, PAD), one disposable immunoassay (Rapid Diagnostic Test, RDT), one portable liquid chromatograph (C-Vue), one microfluidic system (PharmaChk), one mass spectrometer (QDa), and one thin layer chromatography kit (GPHF-Minilab). Each device was tested with a series of field collected medicines (FCM) along with simulated medicines (SIM) formulated in a laboratory. The FCM and SIM ranged from samples with good quality active pharmaceutical ingredient (API) concentrations, reduced concentrations of API (80% and 50% of the API), no API, and the wrong API. All the devices had high sensitivities (91.5 to 100.0%) detecting medicines with no API or the wrong API. However, the sensitivities of each device towards samples with 50% and 80% API varied greatly, from 0% to 100%. The infrared and Raman spectrometers had variable sensitivities for detecting samples with 50% and 80% API (from 5.6% to 50.0%). The devices with the ability to quantitate API (C-Vue, PharmaChk, QDa) had sensitivities ranging from 91.7% to 100% to detect all poor quality samples. The specificity was lower for the quantitative C-Vue, PharmaChk, & QDa (50.0% to 91.7%) than for all the other devices in this study (95.5% to 100%). CONCLUSIONS: The twelve devices evaluated could detect medicines with the wrong or none of the APIs, consistent with falsified medicines, with high accuracy. However, API quantitation to detect formulations similar to those commonly found in substandards proved more difficult, requiring further technological innovation. Public Library of Science 2021-09-30 /pmc/articles/PMC8483346/ /pubmed/34591844 http://dx.doi.org/10.1371/journal.pntd.0009360 Text en © 2021 Zambrzycki et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Zambrzycki, Stephen C.
Caillet, Celine
Vickers, Serena
Bouza, Marcos
Donndelinger, David V.
Geben, Laura C.
Bernier, Matthew C.
Newton, Paul N.
Fernández, Facundo M.
Laboratory evaluation of twelve portable devices for medicine quality screening
title Laboratory evaluation of twelve portable devices for medicine quality screening
title_full Laboratory evaluation of twelve portable devices for medicine quality screening
title_fullStr Laboratory evaluation of twelve portable devices for medicine quality screening
title_full_unstemmed Laboratory evaluation of twelve portable devices for medicine quality screening
title_short Laboratory evaluation of twelve portable devices for medicine quality screening
title_sort laboratory evaluation of twelve portable devices for medicine quality screening
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483346/
https://www.ncbi.nlm.nih.gov/pubmed/34591844
http://dx.doi.org/10.1371/journal.pntd.0009360
work_keys_str_mv AT zambrzyckistephenc laboratoryevaluationoftwelveportabledevicesformedicinequalityscreening
AT cailletceline laboratoryevaluationoftwelveportabledevicesformedicinequalityscreening
AT vickersserena laboratoryevaluationoftwelveportabledevicesformedicinequalityscreening
AT bouzamarcos laboratoryevaluationoftwelveportabledevicesformedicinequalityscreening
AT donndelingerdavidv laboratoryevaluationoftwelveportabledevicesformedicinequalityscreening
AT gebenlaurac laboratoryevaluationoftwelveportabledevicesformedicinequalityscreening
AT berniermatthewc laboratoryevaluationoftwelveportabledevicesformedicinequalityscreening
AT newtonpauln laboratoryevaluationoftwelveportabledevicesformedicinequalityscreening
AT fernandezfacundom laboratoryevaluationoftwelveportabledevicesformedicinequalityscreening