Cargando…
An environmental monitoring data sharing scheme based on attribute encryption in cloud-fog computing
Environmental monitoring plays a vital role in environmental protection, especially for the management and conservation of natural resources. However, environmental monitoring data is usually difficult to resist malicious attacks because it is transmitted in an open and insecure channel. In our pape...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483347/ https://www.ncbi.nlm.nih.gov/pubmed/34591938 http://dx.doi.org/10.1371/journal.pone.0258062 |
Sumario: | Environmental monitoring plays a vital role in environmental protection, especially for the management and conservation of natural resources. However, environmental monitoring data is usually difficult to resist malicious attacks because it is transmitted in an open and insecure channel. In our paper, a new data sharing scheme is proposed by using attribute-based encryption, identity-based signature and cloud computing technology to meet the requirements of confidentiality, integrity, verifiability, and unforgerability of environmental monitoring data. The monitoring equipment encrypts the monitored environmental data and uploads it to the environmental cloud server. Then, monitoring users can request access to the environmental cloud server. If the monitoring user meets the access policy, the plaintext is finally obtained through the fog node decryption. Our proposal mainly uses attribute-based encryption technology to realize the privacy protection and fine-grained access control of monitoring data. The integrity and unforgeability of the monitoring data are ensured by the digital signature. In addition, outsourcing computing technology saves the computing overhead of monitoring equipment and monitoring users. The security analysis illustrates that our proposal can achieve security purposes. Finally, the performance of our proposal and related schemes is evaluated from the aspects of communication overhead and computing overhead. The results indicate that our proposal is secure and efficient in environmental monitoring. |
---|