Cargando…

Spatiotemporal cluster analysis of COVID-19 and its relationship with environmental factors at the city level in mainland China

This study sought to identify the spatial, temporal, and spatiotemporal clusters of COVID-19 cases in 366 cities in mainland China with the highest risks and to explore the possible influencing factors of imported risks and environmental factors on the spatiotemporal aggregation, which would be usef...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Shu-qin, Fang, Zheng-gang, Lv, Cai-xia, An, Shu-yi, Guan, Peng, Huang, De-sheng, Wu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483427/
https://www.ncbi.nlm.nih.gov/pubmed/34595708
http://dx.doi.org/10.1007/s11356-021-16600-9
Descripción
Sumario:This study sought to identify the spatial, temporal, and spatiotemporal clusters of COVID-19 cases in 366 cities in mainland China with the highest risks and to explore the possible influencing factors of imported risks and environmental factors on the spatiotemporal aggregation, which would be useful to the design and implementation of critical preventative measures. The retrospective analysis of temporal, spatial, and spatiotemporal clustering of COVID-19 during the period (January 15 to February 25, 2020) was based on Kulldorff’s time-space scanning statistics using the discrete Poisson probability model, and then the logistic regression model was used to evaluate the impact of imported risk and environmental factors on spatiotemporal aggregation. We found that the spatial distribution of COVID-19 cases was nonrandom; the Moran’s I value ranged from 0.017 to 0.453 (P < 0.001). One most likely cluster and three secondary likely clusters were discovered in spatial cluster analysis. The period from February 2 to February 9, 2020, was identified as the most likely cluster in the temporal cluster analysis. One most likely cluster and seven secondary likely clusters were discovered in spatiotemporal cluster analysis. Imported risk, humidity, and inhalable particulate matter PM(2.5) had a significant impact on temporal and spatial accumulation, and temperature and PM(10) had a low correlation with the spatiotemporal aggregation of COVID-19. The information is useful for health departments to develop a better prevention strategy and potentially increase the effectiveness of public health interventions.