Cargando…
A Method of CT Image Denoising Based on Residual Encoder-Decoder Network
Low-dose computed tomography (CT) has proved effective in lowering radiation risk for the patients, but the resultant noise and bar artifacts in CT images can be a disturbance for medical diagnosis. The difficulty of modeling statistical features in the image domain makes it impossible for the exist...
Autor principal: | Liu, Yali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483931/ https://www.ncbi.nlm.nih.gov/pubmed/34603643 http://dx.doi.org/10.1155/2021/2384493 |
Ejemplares similares
-
Dynamic Residual Dense Network for Image Denoising
por: Song, Yuda, et al.
Publicado: (2019) -
An Encoder–Decoder-Based Method for Segmentation of COVID-19 Lung Infection in CT Images
por: Elharrouss, Omar, et al.
Publicado: (2021) -
Convolutional auto-encoder for image denoising of ultra-low-dose CT
por: Nishio, Mizuho, et al.
Publicado: (2017) -
A Multifeature Extraction Method Using Deep Residual Network for MR Image Denoising
por: Yao, Li
Publicado: (2020) -
Deep residual inception encoder‐decoder network for amyloid PET harmonization
por: Shah, Jay, et al.
Publicado: (2022)